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Abstract

Background: The endogenous circadian clock, which controls daily rhythms in
the expression of at least half of the mammalian genome, has a major influence
on cell physiology. Consequently, disruption of the circadian system is associated
with wide range of diseases including cancer. While several circadian clock genes
have been associated with cancer progression, little is known about the survival
when two or more platforms are considered together. Our goal was to determine
if survival outcomes are associated with circadian clock function. To accomplish
this goal, we developed a Bayesian hierarchical survival model coupled with the
global local shrinkage prior and applied this model to available RNASeq and Copy
Number Variation data to select significant circadian genes associates with
cancer progression.

Results: Using a Bayesian shrinkage approach with the Bayesian accelerated
failure time (AFT) model we showed the circadian clock associated gene DEC1 is
positively correlated to survival outcome in breast cancer patients. The R
package circgene implementing the methodology is available at
https://github.com/MAITYA02/circgene.

Conclusions: The proposed Bayesian hierarchical model is the first shrinkage
prior based model in its kind which integrates two omics platforms to identify the
significant circadian gene for cancer survival.

Keywords: Bayesian survival regression; Bayesian hierarchical modeling; breast
cancer; circadian genes; data integration; gene selection; global local shrinkage
prior; TCGA

1 Background
The molecular circadian clock, regulates daily rhythms in the expression of at least

half of all protein-coding genes [1]. Thus, it is not surprising that disruption of circa-

dian rhythmicity is associated with significant disease, including metabolic disorder

and cancer [2]. Increased cancer incidence and progression are linked to disruption

of the molecular mechanism of the circadian clock [3]. At the core of the mammalian

circadian clock system is a cellular circadian oscillator, which functions in most tis-

sues at the single cell level [4], and is comprised of clock genes that form a core

feedback loop. In this core loop, a heterodimer of the transcription factors CLOCK

and BMAL1 activate the expression of Per and Cry genes, whose protein prod-

ucts negatively feedback on their own expression by inhibiting CLOCK/BMAL1

activity. Several additional loops contribute to the robustness of this core clock

loop, including inhibition of CLOCK/BMAL activity by the basic helix–loop–helix
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(bHLH) transcription factors DEC1 and DEC2 [5–7], which are themselves rhythmi-

cally activated by CLOCK/BMAL [8]. Both DEC1 and DEC2 have been associated

with tumor progression in human cancers, an increased or decreased expression of

DEC1 and DEC2 has been shown to regulate tumor progression [9]. However, the

mechanisms for this regulation are not fully understood.

A recent study compared clock gene expression from human tumor and non-

tumor samples from a range of cancer types that are publicly available in the Cancer

Genome Atlas (TCGA) and NCBI Gene Expression Omnibus (GEO). By comparing

human tumor and non-tumor samples from a range of cancer types, this study

showed that clock gene co-expression is consistently deregulated in tumors [10].

This study supports the use of publicly available human datasets in understanding

the role of the circadian clock in cancer development, progression, prognosis.

In the current era of precision medicine each subject is targeted for treatment mod-

eled on individual healthcare data. Accurate prognostic prediction using molecular

profiles is critical to develop precision medicine. However, cancer studies focus on

one-dimensional omics data have provided limited information regarding the eti-

ology of oncogenesis and tumor progression [11] To overcome this problem, recent

work has focused on integrating multi-platform data in cancer research; as for ex-

ample see [12] and references therein. Currently, TCGA is the largest collection of

genomic data, which also includes parallel transcriptomics, and proteomics and pa-

tient demographic information. One primary aim of TCGA is to have more accurate

stratification and prognosis of the disease by analyzing and interpreting molecular

profiles for hundreds of clinical tumors representing various tumor types and their

subtypes[13], at the DNA, RNA, protein and epigenetic level [8] To improve ther-

apeutic response which may be evident from the phenotypical measures such as

survival of the cancer patients, genomic alterations across these platforms has been

identified. The presence of hundreds of genetic alterations inside of a genome pro-

vides a complementary view of the underlying complex biological process and thus

an integrative analysis of multiple platform is required to achieve the overreaching

goal of cancer studies.

To determine that the circadian gene which plays an important role in breast can-

cer progression and patient survival, we developed a Bayesian shrinkage approach,

coupled with a Bayesian accelerated failure time (AFT) model, for integrative anal-

ysis of multiple platform of omics data. We use DNA copy number variation and

RNAseq data-sources to predict patient survival. Using this approach, the clock gene

and tumor suppressor DEC1 emerged as a significant gene associated with survival

outcomes. While the concept of integration is very broad, and several Bayesian mod-

els exist [14–17], we believe this is the first model to include a shrinkage approach

under the Bayesian regime to predict patient survival considering the circadian gene

effects on the tumor progression.

Limited works have been reported on shrinkage prior in the survival settings

[18, 19]. Both work specified the horseshoe shrinkage prior [20] on the regression

coefficients in order to select the relevant biomarkers in the data. Additionally,

they worked with the parametric models, [18] assumed a Weibull distribution for

the survival model and [19] assumed a log normal distribution for the same, these

works did not deal with integration among multi-platform omics data. In this article,
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we propose a Bayesian log normal regression model for the survival outcome and

exploit the local shrinkage parameter specification to achieve the desired variable

selection.

In Section 2, we provide the detail description of the model specification, the

global local Horseshoe prior specification on the regression model parameters and

how this prior specification helps recovering the significant genes which are reflected

via both RNASeq and CNV platforms. Additionally, the Markov Chain Monte Carlo

(MCMC) scheme to generated posterior samples is developed. Section 3 describes

the entire TCGA data analysis using our proposed method. Section 4 presents some

simulation scenarios validating the model development. In Section 5 we provide our

concluding remarks.

2 Methods
2.1 AFT Regression

We make use of the Accelerated Failure Time (AFT) model which regresses the

survival time on the predictors. The AFT model is given by,

log ti =

p∑
j=1

x1ijβ1j +

p∑
j=1

x2ijβ2j + εi, i = 1, . . . , n, j = 1, . . . , p, (1)

where i denotes the patient, j denotes copy number change or change in gene

expression. Likewise, ti is the survival time of i-th subject, x1ij is the corresponding

p-th copy number change in the data, and x2ij is the corresponding p-th mRNA

expression measured by the RNAseq technology. β1 = (β11, . . . , β1p) is the vector

of regression coefficients corresponding to the copy number changes, similarly, β2 =

(β21, . . . , β2p) is the vector of regression coefficients corresponding to the RNAseq;

and ε is the error vector. Assumption of ε ∼ N(0, σ2I) gives raise to the log normal

AFT model.

Letting ci be the censoring time, the observed time may be denoted by t∗i =

min (ti, ci); the corresponding observed censored indicator is δi = I{ti ≤ ci}, I{.}
being the censoring indicator. Since the response is right censored, we follow the

data augmentation approach of [21] to impute the censored data wik (see also [22]),

wi = log t∗i , if ti is event time; and wi > log t∗i , if ti is right censored.

2.2 Shrinkage Prior

We adopted the Bayesian shrinkage approach using the horseshoe prior [20] on the

regression coefficients. In the shrinkage framework, a scale-mixture representation

of the global local priors allows parameters to be updated in blocks via an automatic

Gibbs sampler [23] which makes it convenient for large scale problems.

Horseshoe prior in its original setting offers to recover the significant variables by

specifying the same number of local shrinkage parameter as the number of regression

parameters. In essence, there are shrinkage parameters for each of the regression

coefficients such that the amount of shrinkage of each the regression coefficients

is controlled by the corresponding local shrinkage parameter. In our setting, when

there are two platforms – CNV and RNASeq expression data available for each

circadian gene, a convenient way is to specify a local shrinkage parameter for two
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regression parameters, one is for the CNV platform and the other is for the RNASeq

platform.

In addition, when we assume the log normal distribution for the underlying time-

to-event distribution the posterior samples generation can be carried out using

convenient Gibbs sampling [24] or the variant. Often the presence of censored ob-

servation makes the posterior distribution more complex, however, in this setting,

a remedy is to impute the right censored observation using the data augmentation

scheme of [21], a successful application of which in time-to-event data has been

shown in [25]. In what follows, the hierarchical Horseshoe representation for the log

normal accelerated failure time (AFT) model is:

log ti|β1j , β2j , σ2∼ N
(
α+

∑p
j=1 x1ijβ1j +

∑p
j=1 x2ijβ2j , σ

2
)

βkj |λj , τ, σ2∼ N(0, λ2jτ
2σ2), k = 1, 2 (2)

λj∼ C+(0, 1), τ∼ C+(0, 1),

α∼ N(0, σ2
ασ

2), σ2∼ π(σ2) = 1/σ2

where, C+(0, 1) is the truncated Cauchy density given by f(x) = 1/{π(1+x2)}, x >
0.

2.3 Conditional Distributions and Posterior Computation

In our AFT model for group correlation structure, most of the conditional distri-

butions are available explicitly, hence we can employ Gibbs sampling [24] technique

to explore the posterior distribution. In particular, the complete conditional distri-

butions of β1, β2, and σ2 are given by:

βk|w, α, λ, τ, σ2 ∼N(B−1XT (w − α1), σ2A−1), B = (XTX +D−1),X = [X1,X2]

σ2|w, α,β1,β2, λ, τ ∼ Inverse Gamma

(
shape =

n+ p+ 1

2
,

scale =
1

2
(w − α−X1β1 −X2β2)T (w − α−X1β1 −X2β2)+

βT1 D
−1β1 + βT2 D

−1β2

))
α|w,β1,β2, σ

2 ∼N(A−11Tn (w −X1β1 −X2β2), σ2A−1), A = (1T1 + σ2
α)),

where, D = τ2diag
(
λ21, . . . , λ

2
p, λ

2
1, . . . , λ

2
p

)
.

Due to the nature of the prior on λ and τ , a straightforward Gibbs sampling

approach may not be possible. An alternative approach, which is based on the idea

of slice sampling [26], has been discussed in the online supplement of [27]. It follows

that,

π(λj |β1j , β2j , τ, σ2) ∝ 1

λj
exp

(
−1

2

β2
1j + β2

2j

λ2jτ
2σ2

)
1

1 + λ2j
I(λj > 0).
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Defining φj = 1/λ2j and introducing a latent parameter uj , the conditional poste-

rior distribution looks like,

π(uj , φj |β1j , β2j , τ, σ2) ∝ exp

(
−1

2

φj(β
2
1j + β2

2j)

τ2σ2

)
I(0 < uj <

1

1 + φj
)I(φj > 0).

Then the following scheme is used to sample the posterior distribution of λ:

1 Sample uj |φj ∼ U{0, 1/(1 + φj)}.
2 Sample φj |uj , β1j , β2j , τ, σ2 ∼ truncated Exponential{(β2

1j + β2
2j)/(2λ

2
jτ

2σ2)}I{0, 1/(uj − 1)}.
3 Compute in λj = 1/

√
φj .

Updating τ can be carried out in the similar fashion. We introduce a latent variable

v and let ξ = 1/τ2 to yield desired posterior samples:

1 Sample v|ξ ∼ U(0, {1/(1 + ξ)}.
2 Sample ξ|v,β,λ, σ2 ∼ truncated Gamma{(p + 1)/2, (1/2σ2)(

∑p
j=1 β

2
1j/λ

2
j +∑p

j=1 β
2
2j/λ

2
j )}I{0, (1/v − 1)}.

3 Compute in τ = 1/
√
ξ.

Finally, we update the censored responses from wi ∼ N
(
α+

∑p
j=1 x1ijβ1j +

∑p
j=1 x2ijβ2j , σ

2
)

lower truncated at log t∗i .

We have written the posterior sampling strategy in an R package circgene format

and make it available on github at the address https://github.com/MAITYA02/circgene.

2.4 Posterior Analysis

The goal is to identify potential common genes that affects survival rates using copy

number change and changes in mRNA expression. Frequentist procedures such as

lasso [28] or other extensions of lasso are designed to provide a sparse solution of the

parameter vector. A Bayesian method, however, provides the posterior distribution

of the parameter from which a posterior summary is extracted to make inferences.

Motivated by this, researchers seek a unified proposal for obtaining good choice of

the posterior summary which in turn recovers important features in high dimen-

sional settings. Recently, [29] proposed a k-means clustering on the posterior space

a successful application has been achieved in [22]. When a shrinkage prior such as

the Horseshoe is used, even though the posterior estimate of β are not exactly zero,

the MCMC sample obtained from posterior distribution of β is expected to produce

two subsets – one set will be clustered around zero corresponding to noise variables

and the other one will be away from zero corresponding to signals. Hence, fitting a

k-means algorithm with k = 2, makes sense to determine the cluster of significant

predictors i.e. the cluster with smaller size.

By construction, each gene is related to the survival by copy number variation

and RNASeq data. Hence, there are two regression coefficient parameters for each

gene corresponding to CNV data and RNASeq data respectively. However, in order

to carry out an integrative analysis and to recover the common genes which are

significant for both CNV data and RNASeq data a single set of λ is specified.

Recall that, λj controls the shrinkage of the j-th gene, and specification of one λj
for both β1j and β2j is the key to accomplish recovering the common genes. As a

consequence, toward the goal of recovering common genes we fit a 2-means clustering

algorithm on the posterior mean of λ; the cluster which will have smaller size can be

mapped to the corresponding genes which are significant for copy number change

and mRNA data because of the structure of our model formulation.
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3 Results in TCGA Data
The main goals of this study were to develop a Bayesian shrinkage coupled with

Bayesian accelerated failure time model to carry out an integrative analysis and to

select circadian genes that play important roles in cancer progression. We focused

on transcriptome data because of its wide availability. For datasets of human cancer,

we analyzed breast cancer data from TCGA. We collected the desired dataset from a

version hosted by Broad Institute using the R package TCGA2STAT [30]. Overall,

we obtained 366 samples with very high censoring rate (84.4%). Multiple clock

genes are reported to play role in cancer progression [31]. From the known reports

we have selected 10 genes [32] to investigate their importance in cancer progression.

Earlier studies showed how the expression pattern of circadian genes are altered

in different cancer as well as how different circadian genes get mutated in different

types of cancer [33].

To investigate the direction of the association of the gene expression we first di-

vide the expressions as measured by the CNV at their median point and classified

the genes into two groups viz. “high” and “low” groups. The high values refer to the

higher expression values of genes and the low values refer to the lower expression

values of those genes. Thus, when the average survival times of the high group is

higher than the low group that implies that the survival is positively associated

with the expressions of that gene. Similarly, it is said that the survival time is neg-

atively associated with the expressions of a gene when the average high expression

values are lower than the average low expression values that is as expressions tend

to lower then the survival times tend to go higher. To confirm this, we produce their

survival times summarized by boxplots in Figures 1 and 2, with red boxes denoting

high group and green boxes denoting the low group which means that their ex-

pression measurements are lower than the other group. From this visualisation it is

evident that if the circadian genes are positively associated (Figure 1) or negatively

associated (Figure 2). A similar plot was obtained using RNASeq data.

To identify clock genes associated with breast cancer survival, we used Bayesian

shrinkage coupled with Bayesian accelerated failure time (AFT) on the TCGA data

set. We obtain the posterior estimates averaging over 100,000 markov Chain Monte

carlo (MCMC) samples after 10,000 samples as burnin. Using the method described

in Section 2.4 on the posterior samples, we found that NPAS2, PER1, PER2, CRY2,

CRY1, CSNK1E, and DEC1 are positively correlated with patients survival for

breast cancer patients as shown by Figure 1, where as PER3, TIMELESS and MT2

are found to be negatively correlated with patient survivals (Figure 2). Finally,

we integrated CNV and RNAseq expression data together to find out DEC1 is

positively correlated with breast cancer patients survival. To see this we refer the

readers to the posterior 95% Bayesian credible intervals for each gene reported in

Table 1. One can note that the credible intervals cover the point 0 for all genes

including DEC1, however, the intervals due to DEC1 include a bigger length of the

positive part of the real line than that of other intervals which make the gene DEC1

significant.

It is known that DEC1 regulates the expression of factors associated with tumor

growth and apoptosis, and is therefore linked to tumor progression. DEC1 is known

to regulate breast cancer cell proliferation by stabilizing cyclin E protein, which
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Table 1: 95% Bayesian credible intervals for coefficients

Gene Interval for CNV data Interval for RNASeq data
NPAS2 (-1.06, 1.36) (-0.01, 0.16)
PER1 (-0.35, 1.50) (-0.03, 0.07)
PER2 (-0.72, 1.53) (-0.13, 0.05)
PER3 (-1.85, 0.44) (-0.06, 0.10)
CRY2 (-0.78, 1.28) (-0.10, 0.09)
CRY1 (-0.63, 1.57) (-0.15, 0.11)

TIMELESS (-1.67, 0.79) (-0.05, 0.02)
CSNK1E (-0.22, 1.33) (-0.02, 0.03)

DEC1 (-1.00, 5.57) (-1.98, 8.48)
MT2 (-0.83, 0.16) (-0.00, 0.00)

Table 2: Simulation results based on 100 simulated datasets. All results are in

proportion.

Censoring True Model True Model Estimated False Positive False Negative
Rate Size Selection Model Size Rate Rate

28% 2 1.00 2.00 0.00 0.00
35% 5 0.46 4.98 0.53 0.53
88% 2 1.00 2.00 0.00 0.00
82% 5 0.39 4.61 0.32 0.40

delays the progression of cell cycle S phase [34]. Our analysis using TCGA tumor

samples supports a key role for DEC1 in tumor progression and suggests that DEC1

expression levels can be used to predict survival rates in breast cancer patients.

To asses the convergence in the MCMC chain we provide the trace plots of β11

and β19 in Figures 3 and 4 respectively. We notice good mixing in both posterior

samples. The corresponding Gelman-Rubin convergence diagnostics are 1 and 1,

which are less than 1.1 confirming that a convergence has been achieved. Similar

trace plots can be obtained for other parameters which we skip here for brevity.

4 Results in Simulated Data
In this Section we provide some simulation studies with a similar setting as in the

breast cancer data example in Section 3. We consider two design matrices – X1

and X2 both with dimension 300 × 10, assuming X1 and X2 correspond to CNV

and RNASeq respectively, which replicates similar settings of the breast cancer

data in TCGA. For the sake of simplicity the columns (genes) of the matrices are

generated from uncorrelated Gaussian distribution with unit variance covariance

matrix. We consider three true scenarios for the coefficient vector β – two of the

genes for each X1 and X2 are significant and five of the genes for each X1 and

X2 are significant. The true values of the significant coefficients are generated from

an Uniform distribution with parameters (-1.5, 1.5). Then the survival times of

the subjects are generated according to equation (1) in log scale with σ2 = 1.

The censoring rate is induced assuming a Gamma distribution. The censor rate

in a particular example can be created by appropriately setting the parameters

of the Gamma distribution (see also [19]). In this way we consider three censored

situation depending on how many subjects are censored. In each setting we produce

100 simulated datasets and fit our proposed model developed in Section 2. In Table

2 we report the results averaged over 100 datasets.

To obtain the posterior operating characteristics, for each simulation we consider

10,000 MCMC samples after discarding 1,000 burnin samples, no thinning was
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considered. After fitting our developed method (see Section 2) to the simulated

datasets we processed the posterior samples using the method described in Section

2.4 to compute four different matrices to assess the performance of the developed

method –

• True Model Selection: Proportion of times the true model or the data-

generating model is identified by our method.

• Estimated Model Size: Average model size of the model identified by our

method.

• False Positive Rate: Proportion of coefficients identified as significant by

our method when in fact they were not present in the true model. Any method

with lower false positive rate is preferred.

• False Negative Rate: Proportion of coefficients which were not identified as

significant by our method when in fact they were present in the true model.

Any method with lower false negative rate is preferred.

The simulation results are summarized in Table 2. One can note that the per-

formance of the proposed method is well in terms of selecting the true model. The

good performance is especially evident when the data generating model or the true

model is sparse. For instance, when the 28% samples are right censored, the true

model size is 2, the true model is recovered in each of the 100 simulated datasets. As

a consequence, the false positive rate and false negative rate are 0. The good per-

formance continues even when 88% data is censored, which is similar to the Breast

cancer data (84.4% censored data). However, the performance degrades when the

true model is not sparse; this can be justified because Horseshoe prior is widely

known to produce parsimonious solution.

5 Discussion and Conclusion
To the best of our knowledge, this study is the first in its kind to analyze breast

tumor samples data from TCGA for integrating omics data and selecting the circa-

dian gene important in cancer progression. In this work we have exploited shrinkage

nature of the global local Horseshoe prior in order to integrate the two platforms

– copy number variation and RNAseq data to uncover the important genes associ-

ated with the patient survivals. By virtue of the unique specification of the global

parameters and local parameters of the Horseshoe prior the analysis made it pos-

sible to identify the common genes which are important via the both types of the

measurements of the gene expressions. The TCGA data of circadian gene measure-

ments for the brain cancer patients discover the DEC1 as the associated gene with

the patient survival which has already been known in the literature for its role in

cancer patients.

In Section 2.3 the MCMC chain is constructed on the conditional distributions

of the primary parameters α, β, and σ2 by virtue of which straightforward Gibbs

sampling is carried out. Nonetheless, this construction is only possible if one has

the full data likelihood computed. In a censored data scenario the data likelihood is

typically consists of some censored observations which preclude to carry out Gibbs

sampling. To mitigate this issue we augmented the full data and sampled the cen-

sored observations from truncated space. As we have noted above, the posterior

sampling achieved good convergence in the application we have considered. Alter-

natively, a pseudo marginal sampling approach [35] can also be explored if good
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mixing is obtained. For instance, the likelihood can be estimated unbiasedly using

Poisson estimator [36] or the difference estimator [37]. Then the regression coeffi-

cients α and λ and the variance parameter σ2 can be updated using the Metropolis

Hastings scheme using a suitable proposal distribution. However, λ and τ can still

be updated using the method described in Section 2.3. In this implementation if

n >> p one can use two step Metropolis Hastings approach, developed in [38] when

updating the regression parameters to avoid observing a long MCMC chain for

convergence.
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Figure 1: Displayed boxes show that NPAS2, PER1, CRY2, CRY1, CSNK1E, and

DEC1 are positively associated with patients survival. Right panel boxes show that

PER3, TIMELESS and MT2 are negatively associated with patients survival. The

left (green) boxes belong to the lower CNV measurements which means that the

measurements are lower than the median point. The right (red) boxes belong to the

higher CNV measurements which means that the measurements are more than the

median point. The plotted boxes are the survival times of the individuals.

Figure 2: Displayed boxes show that PER3, TIMELESS and MT2 are negatively

associated with patients survival. The left (green) boxes belong to the lower CNV

measurements which means that the measurements are lower than the median point.

The right (red) boxes belong to the higher CNV measurements which means that the

measurements are more than the median point. The plotted boxes are the survival

times of the individuals.

Figure 3: Trace plots of β11.

Figure 4: Trace plots of β19.


