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Abstract

Transformation-based methods have been an attractive approach in non-parametric infer-

ence for problems such as unconditional and conditional density estimation due to their unique

hierarchical structure that models the data as flexible transformation of a set of common latent

variables. More recently, transformation-based models have been used in variational infer-

ence (VI) to construct flexible implicit families of variational distributions. However, their use

in both non-parametric inference and variational inference lacks theoretical justification. We

provide theoretical justification for the use of non-linear latent variable models (NL-LVMs) in

non-parametric inference by showing that the support of the transformation induced prior in the

space of densities is sufficiently large in the L1 sense. We also show that, when a Gaussian process

(GP) prior is placed on the transformation function, the posterior concentrates at the optimal

rate up to a logarithmic factor. Adopting the flexibility demonstrated in the non-parametric
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setting, we use the NL-LVM to construct an implicit family of variational distributions, deemed

GP-IVI. We delineate sufficient conditions under which GP-IVI achieves optimal risk bounds

and approximates the true posterior in the sense of the Kullback-Leibler divergence. To the

best of our knowledge, this is the first work on providing theoretical guarantees for implicit

variational inference.

1 Introduction

Transformation-based models are a powerful class of latent variable models, which rely on a hier-

archical generative structure for the data. In their simplest form, these models have the following

structure

yi = µ(xi) + ǫi, ǫi ∼ N(0, σ2),

xi
iid∼ g, (1.1)

for i = 1, . . . , n, where yi ∈ R is a real-valued observed variable, µ is the ‘transformation’ function,

xi is a latent (unobserved) variable underlying yi, g is a known density of the latent data (e.g.,

uniform or standard normal), and we include a Gaussian measurement error with variance σ2.

For simplicity in exposition, we consider a very simple case to start but one can certain include

multivariate xi and yi and other elaborations.

Model (1.1) and its elaborations include many popular methods in the literature. If we choose

a Gaussian process (GP) prior for the function µ, then we obtain a type of GP Latent Variable

Model (GP-LVM) (Lawrence, 2004, 2005; Lawrence and Moore, 2007). We can also obtain kernel

mixtures as a special case; for example, by choosing a discrete distribution for g. The extremely

popular Variational Auto-Encoder (VAE) is based on choosing a deep neural network for µ, and

then obtaining a particular variational approximation relying on a separate encoder and decoder

neural network (Kingma and Welling, 2013). Refer also to the non-linear latent variable model

(NL-LVM) framework of (Kundu and Dunson, 2014) for a nonparametric Bayesian perspective on

models related to (1.1).

However, a key question is what are the theoretical properties of ‘transformation’ based models

of the form in (1.1). For example, can this framework be theoretically used to approximate any
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density with an arbitrarily high degree of accuracy? Does the accuracy improve with sample size

as the optimal rate for density estimation or conditional density estimation (given fixed covariates)

problems?

These types of questions have been answered elegantly for many nonparametric Bayes and fre-

quentist density estimation methods. For example, Dirichlet process mixture models (DPMMs)

have been very widely applied (Escobar and West, 1995; Ferguson, 1973, 1974; MacEachern, 1999;

Müller et al., 1996) and studied in terms of their optimality properties asymptotically (Ghosal et al.,

1999, 2000a; Ghosal and van der Vaart, 2007; Kruijer et al., 2010).

When using a continuous distribution g, model (1.1) leads to a specific class of continuous

transformation-based model as the NL-LVM models. Here a GP prior is a natural choice for

the unknown transformation (Dasgupta et al., 2017; Kundu and Dunson, 2014; Lenk, 1988, 1991;

Tokdar, 2007; Tokdar et al., 2010), however this approach has two main setbacks. The primary

tools used to develop these theoretical results in the context of DPMMs, approximating an arbitrary

smooth density using a convolution against a discrete mixing measure, cannot be extended to NL-

LVMs in a straightforward manner. The alternative approach using Markov chain Monte Carlo

methods comes with theoretical guarantees, but suffers from computational instability owing to

lack of conjugacy. This instability propagates through the posterior distribution of the unknown

transformation requiring expert parameter tuning and vigilance for guaranteed performance. To

mitigate some of these issues associated with a full-blown MCMC, approximate Bayesian methods

including the variational inference are proposed (Titsias and Lawrence, 2010).

Development of flexible variational families using the reparametrization trick (Figurnov et al.,

2018; Jankowiak and Obermeyer, 2018; Kingma et al., 2015; Kingma and Welling, 2013) have emerged

as a powerful idea over the last decade and continues to flourish, often in parallel with latest de-

velopments in generative deep-learning methods. While the overarching goal of this trick is to find

unbiased estimates of the gradient of the objective function (evidence lower bound in variational

inference), one cannot but notice its connection with non-linear latent variable methods. A sim-

ilar idea is explored as Implicit variational inference (Huszár, 2017; Shi et al., 2017) to construct

an implicit distribution, a distribution that cannot be analytically specified but can be sampled

from. Such a construction brings in certain computational challenges stemming from density ra-

tio estimation. More recently, implicit VI was extended to semi-implicit VI (Molchanov et al.,
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2019; Titsias and Ruiz, 2019; Yin and Zhou, 2018) which avoids density ratio estimation by using

a semi-implicit variational distribution qφ(θ) =
∫
q{θ | gφ(u)}q(u)du where the density q{z | gφ(u)}

corresponds to a transformation-based model with transformation gφ – typically taken to be a neu-

ral network with parameters φ. Although VI approaches have shown significant improvements in

computational speed their theoretical properties are largely a mystery.

By developing a framework to answer the two previous theoretical questions for NL-LVM with a

continuous transform, we are able to find a novel approach to implicit variational inference based on

the NL-LVM, for which we can provide strong theoretical guarantees. Building off of the framework

from Kundu and Dunson (2014), we provide a rate-adaptive result for a class of NL-LVM models

for density estimation by assigning a rescaled GP prior on the transformation function, and in

the process significantly advance the technical understanding of NL-LVM. We provide conditions

for the mixing measure to admit a density with respect to Lebesgue measure and show that the

prior support of the NL-LVM is at least as large as that of DPMMs. We use the same class

of NL-LVM models to construct a flexible implicit variational family, deemed GP-IVI. We show

that Kullback–Leibler (KL) divergence between the GP-IVI and the true posterior is stochastically

bounded, which is the best possible attainable bound. Additionally, we show that GP-IVI achieves

the optimal variational risk bound. To the best knowledge of the authors, these are the first

theoretical results in the context of implicit variational inference methods.

A summary of our contributions. Our results are the first to provide a concrete theoretical frame-

work for transformation-based models widely used in Bayesian inference and machine learning.

By establishing a connection between NL-LVM with implicit family of distributions, we provide

statistical guarantees for implicit variational inference. Motivated by our findings, transformation-

based models have the potential to provide machine learning with a rich class of implicit variational

inference methods that come with strong theoretical guarantees.

We close the section by defining some notations in §1.1 used throughout the paper. In §2 we

present an overview of the NL-LVM model as well as several properties of the model. In section §3

we discuss our two main results for non-parameteric inference using NL-LVM. In §4 we introduce

GP-IVI. We then show that that the KL divergence between the variational posterior and the true

posterior is stochastically bounded and argue why this is optimal from a statistical perspective.

Inspired by Yang et al. (2020), we additionally present parameter risk bounds of a version of implicit
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variational inference, which we term as α-GP-IVI which is obtained by raising the likelihood to a

fractional power α ∈ (0, 1).

1.1 Notation

We denote the Lesbesgue measure on R
p by λ. The supremum norm and L1-norm are denoted

by ‖·‖∞ and ‖·‖1, respectively. For two density functions p, q ∈ F , let h denote the Hellinger

distance defined as h2(p, q) =
∫
(p1/2 − q1/2)2dλ. Denote the Kullbeck-Leibler divergence between

two probability densities p and q with respect to the Lebesgue measure by D(p||q) =
∫
p log(p/q)dλ.

We define the additional discrepancy measure V (p||q) =
∫
p log2(p/q)dλ, which will be referred to

as the V-divergence. For a set A we use IA to denote its indicator function. We denote the

density of the normal distribution N(t; 0, σ2Id) by φσ(t). We denote the convolution of f and g by

f ∗ g(y) =
∫
f(y− x)g(x)dx. Absolute continuity of q with respect to p will be denoted q ≪ p. We

denote the set of all probability densities f ≪ λ by F . The support of a density f is denoted by

supp(f). For a set X , let C(X ) and Cβ(X ), β > 0 denote the spaces of continuous functions and

β-Hölder space, respectively. We write ”-” for inequality up to a constant multiple. For any a > 0

denote ⌊a⌋ the largest integer that is no greater than a.

2 A specific transformation-based model

In this section, we focus on an NL-LVM model (Kundu and Dunson, 2014) in which the response

variables are modeled as unknown functions (referred to as the transfer function) of uniformly

distributed latent variables with an additive Gaussian error. This is clearly a specific instance of a

transformation-based method; since the inverse c.d.f. transform of uniform random variables can

generate draws from any distribution, a prior with large support on the space of transfer functions

can approximate draws from any continuous distribution function arbitrarily closely. One can also

conveniently approximate a parametric family with the non-parametric model by centering the

prior on the transfer function on a parametric class of inverse c.d.f. functions. We start from the

model formulation and then present a general approximation result of NL-LVM model to the true

density under mild regularity conditions.
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2.1 The NL-LVM model

Suppose we have IID observations Yi ∈ R for i = 1, . . . , n with density f0 ∈ F , the set of all densities

on R absolutely continuous with respect to the Lebesgue measure λ. We consider a non-linear latent

variable model

Yi = µ(ηi) + ǫi, ǫi ∼ N(0, σ2), i = 1, . . . , n

µ ∼ Πµ, σ ∼ Πσ, ηi ∼ U(0, 1), (2.1)

where ηi’s are latent variables, µ ∈ C[0, 1] is a transfer function relating the latent variables to the

observed variables and ǫi is an idiosyncratic error. Marginalizing out the latent variable, we obtain

the density of y conditional on the transfer function µ and scale σ

f(y;µ, σ)
def
= fµ,σ(y) =

∫ 1

0
φσ(y − µ(x))dx. (2.2)

It is not immediately clear whether the class of densities {fµ,σ} encompasses a large subset of

the density space. The following intuition relates the above class with continuous convolutions

which plays a key role in our proofs. Within the support of a continuous density f0, its cumulative

distribution function F0 is strictly monotone and hence has an inverse F−1
0 satisfying F0{F−1

0 (t)} =

t for all t ∈ supp(f0). Now letting µ0(x) = F−1
0 (x), one obtains fµ0,σ(y) = φσ ∗ f0, the convolution

of f0 with a normal density having mean 0 and standard deviation σ. This provides a way to

approximate f0 by the NL-LVM, as an important property to bounding the KL-divergence. We

summarize the approximation result in the next section.

Let λ̃ denote the Lebesgue measure on [0, 1] and denote the Borel sigma-field of R by B. For

any measurable function µ : [0, 1] → R, let νµ denote the induced measure on (R,B), then, for
any Borel measurable set B, νµ(B) = λ̃(µ−1(B)). By the change of variable theorem for induced

measures,

∫ 1

0

φσ(y − µ(x))dx =

∫
φσ(y − t)dνµ(t), (2.3)

so that fµ,σ in (2.2) can be expressed as a kernel mixture form with mixing distribution νµ. It turns

out that this mechanism of creating random distributions is very general. Depending on the choice
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of µ, one can create a large variety of mixing distributions based on this specification. For example,

if µ is a strictly monotone function, then νµ is absolutely continuous with respect to the Lebesgue

measure, while choosing µ to be a step function, one obtains a discrete mixing distribution.

2.2 Assumptions on true data density f0

It is widely recognized that one needs certain smoothness assumptions and tail conditions on the

true density f0 to derive posterior convergence rates. We make the following assumptions:

Assumption F1 We assume log f0 ∈ Cβ[0, 1]. Let lj(x) = dj/dxj{log f0(x)} be the jth

derivative for j = 1, . . . , r with r = ⌊β⌋. For any β > 0, we assume that there exists a constant

L > 0 such that

|lr(x)− lr(y)| ≤ L|x− y|β−r, (2.4)

for all x 6= y.

The smoothness assumption in the log scale will be used to obtain an optimal approximation

error of the GP-transformation-based model to the true f0, providing a key piece in managing

the KL-divergence between the true and the model for posterior inference. Similar assumption

on the local smoothness appeared in Kruijer et al. (2010), while in our case a global smoothness

assumption is sufficient since f0 is assumed to be compactly supported.

Assumption F2 We assume f0 is compactly supported on [0, 1], and that there exists some

interval [a, b] ⊂ [0, 1] such that f0 is non-decreasing on [0, a], bounded away from 0 on [a, b] and

non-increasing on [b, 1].

Assumption F2 guarantees that for every δ > 0, there exists a constant C > 0 such that

f0 ∗ φσ ≥ Cf0 for every σ < δ. Also see Ghosal et al. (1999) for similar assumption in density

estimation.

2.3 Approximation property

As mentioned above, the flexibility of fµ,σ comes from a large class of the induced density measure

νµ. Now we discuss the approximation of fµ,σ to the true f0 where we utilize its equivalent form of a

convolution with a Gaussian kernel. It is well known that the convolution φσ∗f0 can approximate f0
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arbitrary closely as the bandwidth σ → 0. For Hölder-smooth functions, the order of approximation

can be characterized in terms of the smoothness. If f0 ∈ Cβ[0, 1] with β ≤ 2, the standard Taylor

series expansion guarantees that ||φσ ∗ f0 − f0||∞ = O(σβ). However, for β > 2, it requires higher

order kernels for the convolution to remain the optimal error (Devroye, 1992; Wand and Jones,

1994). Kruijer et al. (2010) proposed an iterative procedure to construct a sequence of function

{fj}j≥0 by

fj+1 = f0 −△σfj, △σfj = φσ ∗ fj − fj, j ≥ 0. (2.5)

We define fβ = fj with integer j such that β ∈ (2j, 2j+2]. Under such construction, for f0 ∈ Cβ[0, 1]

the convolution φσ ∗ fβ preserves the optimal error O(σβ) (Lemma 1 in Kruijer et al. (2010)). We

state a similar result in the following.

Proposition 2.1. For f0 ∈ Cβ[0, 1] with β ∈ (2j, 2j + 2] satisfying Assumptions F1 and F2, for

fβ defined as from the iterative procedure (2.5) we have

‖φσ ∗ fβ − f0‖∞ = O(σβ),

and

φσ ∗ fβ(x) = f0(x)(1 +D(x)O(σβ)), (2.6)

where

D(x) =
r∑

i=1

ci|lj(x)|
β
i + cr+1,

for non-negative constants ci, i = 1, . . . , r + 1, and for any x ∈ [0, 1].

The proof can be found in the supplementary file section A.2. The ability to represent the

model in terms proportional to true density plays an important role in bounding the KL-divergence

between fµ,σ and f0.

Remark 2.1. The approximation result can be extended to the isotropic β-Hölder space Cβ [0, 1]d
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under similar regularity assumptions. The extended approximation result can be applied to more

general cases.

3 Posterior inference for NL-LVM

Most of the existing literature on non-parametric Bayesian approaches to the density estima-

tion problem are centered around DP mixture priors (Ferguson, 1973, 1974), which are simply

transformation-based models with a discrete distribution for the latent variables. On the other

hand, the theoretical properties of continuous transformation-based models remain largely un-

known.

In this section, we provide theoretical results for posterior inference of the transformation-based

model for unconditioned density estimation in the context of NL-LVM. Our results are two-fold:

(1) We first show that a large class of transfer function µ leads to L1 large support of the space of

densities induced by the NL-LVM; (2) We obtain the optimal frequentist rate up to a logarithmic

factor under standard regularity conditions on the true density using the transformation-based

approach with induced GP priors.

3.1 L1 large support

One can induce a prior Π on F via the mapping fµ,σ by placing independent priors Πµ and Πσ

on C[0, 1] and [0,∞) respectively, as Π = (Πµ ⊗ Πσ) ◦ f−1
µ,σ. Kundu and Dunson (2014) assumes

a Gaussian process prior with squared exponential covariance kernel on µ and an inverse-gamma

prior on σ2. Given the flexibility of fµ,σ upon the choices of µ, placing a prior on µ supported on

the space of continuous functions C[0, 1] without further restrictions is convenient and Theorem

3.1 assures us that this specification leads to large L1 support on the space of densities.

Suppose the prior Πµ on µ has full sup-norm support on C[0, 1] so that Πµ(‖µ−µ∗‖∞ < ǫ) > 0

for any ǫ > 0 and µ∗ ∈ C[0, 1], and the prior Πσ on σ has full support on [0,∞). If f0 is

compactly supported, so that the quantile function µ0 ∈ C[0, 1], then it can be shown that under

mild conditions, the induced prior Π assigns positive mass to arbitrarily small L1 neighborhoods of

any density f0. We summarize the above discussion in the following theorem, with a proof provided

in the section A.3 of supplementary file.
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Theorem 3.1. If Πµ has full sup-norm support on C[0, 1] and Πσ has full support on [0,∞), then

the L1 support of the induced prior Π on F contains all densities f0 which have a finite first moment

and are non-zero almost everywhere on their support.

Remark 3.1. The conditions of Theorem 3.1 are satisfied for a wide range of Gaussian process

priors on µ (for example, a GP with a squared exponential or Matérn covariance kernel).

Remark 3.2. When f0 has full support on R, the quantile function µ0 is unbounded near 0 and 1,

so that ‖µ0‖∞ = ∞. However,
∫ 1
0 |µ0(t)| dt =

∫
R
|x| f0(x)dx, which implies that µ0 can be identified

as an element of L1[0, 1] if f0 has finite first moment. Since C[0, 1] is dense in L1[0, 1], the previous

conclusion regarding L1 support can be shown to hold in the non-compact case too.

3.2 Posterior contraction results

Gaussian process priors have been widely used in non-parametric Bayesian inference as well as ma-

chine learning due to their modeling advantages and proper theoretical grounding (van der Vaart and van Zanten,

2007, 2008, 2009). Considering a Gaussian process as the transformation mapping over the latent

variable, the transformation-based model essentially aligns with a Gaussian process latent variable

model (GP-LVM) (Ferris et al., 2007; Lawrence, 2004, 2005; Lawrence and Moore, 2007). Theoret-

ical work of GP-LVM such as Kundu and Dunson (2014) showed a KL large support of the induced

prior process, and also showed the posterior consistency to the true density function. However a

straightforward description of the space of densities induced by the proposed model is not clear

and the posterior contraction rate of the proposed model for finite data is still unknown.

We now present the posterior contraction result for transformation-based model with NL-LVM.

To that end, we first review its definition. Given independent and identically distributed observa-

tions Y (n) = (Y1, . . . , Yn) from a true density f0, a posterior Πn associated with a prior Π on F is

said to contract at a rate ǫn, if for a distance metric dn on F ,

Ef0Πn{dn(f, f0) > Mǫn | Y (n)} → 0 (3.1)

for a suitably large integerM > 0. Unlike the treatment in discrete mixture models (Ghosal and van der Vaart,

2007) where a compactly supported density is approximated with a discrete mixture of normals,
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the main idea is to first approximate the true density f0 by a proper convolution with fβ defined as

in (2.5), then allow the GP prior on the transfer function to appropriately concentrate around µβ,

the inverse c.d.f. function of the defined fβ. We first state our choices for the prior distributions

Πµ and Πσ.

Assumption P1 We assume µ follows a centered and rescaled Gaussian process denoted by

GP(0, cA), where A denotes the rescaled parameter, and assume A has density g satisfying for

a > 0,

C1a
p exp (−D1a log

q a) ≤ g(a) ≤ C2a
p exp (−D2a log

q a).

Assumption P2 We assume σ ∼ IG(aσ, bσ). Note that contrary to the usual conjugate choice of

an inverse-gamma prior for σ2, we have assumed an inverse-gamma prior for σ. This enables one to

have slightly more prior mass near zero compared to an inverse-gamma prior for σ2, leading to the

optimal rate of posterior convergence. Refer also to Kruijer et al. (2010) for a similar prior choice

for the bandwidth of the kernel in discrete location-scale mixture priors for densities.

Theorem 3.2. If f0 satisfies Assumptions F1 and F2 and the priors Πµ and Πσ are as in Assump-

tions P1 and P2 respectively, the best obtainable rate of posterior convergence relative to Hellinger

metric h is

ǫn = n− β

2β+1 (log n)t, (3.2)

where t = β(2 ∨ q)/(2β + 1) + 1.

We provide a sketch of the proof below, the full proof is deferred to the supplementary file section

A.4. It suffices to check sufficient conditions (prior thickness, sieve construction, entropy condition)

for posterior contraction result in Ghosal et al. (2000a). We first verify the prior thickness. From

Lemma 8 of Ghosal and van der Vaart (2007), one has

∫
f0 log

(
f0
fµ,σ

)i

≤ h2(f0, fµ,σ)

(
1 + log

∥∥∥∥
f0
fµ,σ

∥∥∥∥
∞

)i

,
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for i = 1, 2. By Lemma B.2, we have log ‖f0/fµ,σ‖∞ ≤ ‖µ − µβ‖∞/σ2, and by Lemma B.1 and

Lemma B.6, we bound h2(f0, fµ,σ) - ‖µ− µβ‖∞/σ2 +O(σ2β). Then we have

{
σ ∈ [σn, 2σn],‖µ − µβ‖∞ - σβ+1

n

}
⊂ {D(f0||fµ,σ) - σ2β

n , V (f0||fµ,σ) - σ2β
n }.

Under assumptionsP1 andP2 the prior thickness is guarantee by upper bounding Π
{
σ ∈ [σn, 2σn], ‖µ−

µβ‖∞ - σβ+1
n

}
. We construct the sieve

Fn = {fµ,σ : µ ∈ Bn, ln < σ < hn}.

where Bn denotes the sieve for a GP prior on µ as defined in van der Vaart and van Zanten (2009).

Further we calculate the entropy N(ǭn,Fn, ‖·‖1) by observing that for σ2 > σ1 > σ2/2,

‖fµ1,σ1
− fµ2,σ2

‖1 ≤
(
2

π

)1/2 ‖µ1 − µ2‖∞
σ1

+
3(σ2 − σ1)

σ1
.

The entropy bound is obtained applying Lemma B.7. Finally, the sieve compliment condition is

easily verified by combining the results on GP priors in van der Vaart and van Zanten (2009) and

tail properties of inverse-gamma distribution of σ.

4 Gaussian Process Implicit Variational Inference

Motivated by the flexibility we have demonstrated for transformation-based models in the non-

parametric setting, we construct a flexible implicit variational family of distributions, deemed

Gaussian process implicit variational inference (GP-IVI). We provide sufficient conditions under

which GP-IVI achieves optimal risk bounds and approximates the true posterior in the sense of

the Kullback–Leibler divergence. We begin by defining common terminology used throughout the

section and defining GP-IVI.

4.1 Preliminaries

We consider IID observations Yi ∈ R
p, for i = 1, . . . , n. Let P

(n)
θ be the distribution of the

observations with parameter θ ∈ Θ ⊂ R
d that admits a density p

(n)
θ relative to the Lebesgue

measure. Let Pθ denote the prior distribution of θ that admits a density pθ over Θ. With a
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slight abuse of notation, we will use p(Y (n) | θ) to denote P
(n)
θ and its density function. We adopt a

frequentist framework and assume a true data generating distribution P
(n)
θ∗ and a true parameter θ∗.

Denote the negative log prior U(θ) = − log pθ(θ) and the log-likelihood ratio of Yi, for i = 1, . . . , n,

by

ℓi(θ, θ
∗) = log[p(Yi | θ)/p(Yi | θ∗)]. (4.1)

We denote the first two moments of the log-likelihood by

D(θ∗||θ) = −E
(n)
θ∗ [ℓ1(θ, θ

∗)], µ2(θ
∗||θ) = E

(n)
θ∗ [ℓ1(θ, θ

∗)2]. (4.2)

Lastly denote the appropriate neighborhood around the true parameter θ∗,

Bn(θ
∗, ε) = {θ | D[p(Y (n) | θ∗)‖p(Y (n) | θ)] ≤ nε2, V [p(Y (n) | θ∗)‖p(Y (n) | θ)] ≤ nε2}. (4.3)

4.2 Gaussian Process Implicit Variational Inference

Using the NL-LVM model, we can define the variational family of θ conditioned on the latent

variable η, with parameters µ ∈ C[0, 1] and σ ∈ (0,∞),

qµ,σ(θi | ηi) = φσ(θi − µ(ηi))

ηi ∼ U(0, 1), i = 1, . . . , d.

Marginalizing over the latent η gives us the implict variational distribution,

qµ,σ(θ) =

∫ 1

0
φσ(θ − µ(η))dη.

Together this defines the Gaussian process implict variational inference (GP-IVI) family,

QGP =

{
qµ,σ(θ) =

∫ 1

0

φσ(θ − µ(η))dη | µ ∈ C[0, 1], σ > 0

}
.
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4.3 Approximation Quality of GP-IVI

In this section, we show that KL divergence between the true posterior and its optimal GP-IVI

approximation is Op(1). Using a simple example, we show that without further assumptions this

bound cannot be improved. We begin the section with said example.

Consider the following one-dimensional Gaussian-Gaussian Bayesian model for inference of an

unknown true mean θ∗ using the model

Y1, . . . , Yn ∼ N(θ, σ2), θ ∼ N(µ0, σ
2
0)

in which µ0, σ0, σ are all known. Let Y n, µn, σ
2
n denote the sample mean, the posterior mean, and

variance, respectively. Straight forward calculations show

D
[
N(θ∗, n−1σ2)||N(µn, σ

2
n)
]
→ χ2

1, weakly.

Even in the simple case of a normal-normal model, we see that the KL divergence between the

true data generating distribution and the true posterior does not converge weakly to 0 but instead

converges weakly to a stochastically bounded random variable.

The Op(1) bound is achieved over a rather small subfamily of GP-IVI. Define the restricted

Gaussian family

Γn = {N(µ, τ2Id) | ‖µ‖2 ≤ M, 0 ≤ σn ≤ τ ≤ c
1/2
0 σn},

and let µf denote the quantile function corresponding to f ∈ Γn. We define the corresponding

small bandwidth convolution Gaussian (variational) family

Qn =

{
qµ,σ(θ) | qµ,σ(θ) =

∫ 1

0

φσ(θ − µf (η))dη, f ∈ Γn

}
.

The following assumptions are required to show the Op(1) bound for the KL-divergence.

Assumption B1 The true parameter θ∗ satisfies ‖θ∗‖2 ≤ M .
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Assumption B2 The variance bound σn satisfies 0 ≤ σn ≤ n−1/2 ≤ c
1/2
0 σn, for all n ≥ 1.

Assumption B3 The quantities D(θ∗||θ) and µ2(θ
∗||θ) are finite for all θ ∈ R

d.

Assumption B4 The matrices of the second derivatives, D(2)(θ∗||θ), µ
(2)
2 (θ∗||θ), U (2)(θ) exist

on R
d and satisfy for any θ, θT ∈ R

d,

smax

(
D(2)(θ∗||θ)−D(2)(θ∗||θT)

)
≤ C‖θ − θT‖α1

2 ,

smax

(
µ
(2)
2 (θ∗||θ)− µ

(2)
2 (θ∗||θT)

)
≤ C‖θ − θT‖α2

2 ,

smax

(
U (2)(θ)− U (2)(θT)

)
≤ C‖θ − θT‖α3

2 ,

for some α1, α2, α3 > 0. Here smax denotes the maximum eigenvalue of the matrix.

Assumption B5 D(θ∗||θ) ≥ C‖θ − θ∗‖2.

Assumption B1 is needed so that a normal distribution centered at the true parameter is con-

tained in Γn. AssumptionsB2-B4 are technical assumptions needed in order to achieve convergence

of certain bounds used in the proof. Assumption B5 is a standard identifiability condition.

Theorem 4.1. Under assumptions B1 through B5 it holds that m∗
n(Qn) = minq∈Qn {D[q||p(· | Y n)]}

is bounded in probability with respect to the data generating distribution P
(n)
θ∗ . Formally, given any

ε > 0, there exists Mε, Nε > 0 such that for n ≥ Nε, we have P
(n)
θ∗ (m∗

n(Qn) > Mε) ≤ ε.

Again, we provide a sketch of the proof below and provide a full proof in section A.5 of the

supplementary file. Under assumptions B1-B2, qn(θ) = N(θ; θ∗, σ2 + σ2
n) belongs to Qn. By

definition, m∗
n(Qn) ≤ D[qn||p(· | Y (n))]. We show D[qn||p(· | Y (n))] is Op(1) by showing that

it is a sum of Op(1) terms. Letting En denote the expectation with respect to qn, D[qn||p(· |

Y (n))] can be broken into four parts En[log qn], logm(Y (n)), En[U(θ)], and En [
∑n

i=1 ℓi(θ, θ
∗)]. The

first term En[log qn] is a constant, hence Op(1). Noting E
(n)
θ∗ [m(Y (n))] = 1, an application of

Markov’s inequality shows that logm(Y (n)) is Op(1). Taking a (multivariate) Taylor expansion of

the functions U(θ), D(θ∗||θ), and µ2(θ
∗||θ) about θ∗ and applying assumption B4 and B5 gives us
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the bounds

Cℓ(σ
2 + σ2

n) ≤ En[D(θ∗||θ)] ≤ Cu(σ
2 + σ2

n),

En[µ2(θ
∗||θ)] ≤ C2(σ

2 + σ2
n), (4.4)

En[U(θ)] ≤ C1(σ
2 + σ2

n).

Markov’s inequality shows that U(θ) is Op(1). It remains to show En [
∑n

i=1 ℓi(θ, θ
∗)] is Op(1). Given

ε > 0, choose δ =
[
C2c0/(εCℓ)

2
]1/2

. Applying Chebychev’s and Jensen’s inequalities together with

(4.4) we have,

P
(n)
θ∗

{
E0

[
n∑

i=1

ℓi(θ, θ
∗)

]
≤ −Cu(1 + δ)n(σ2 + σ2

n)

}
≤ En[µ2(θ

∗||θ)]
δ2n (En[D(θ∗||θ)])2

≤ C2

Cℓδ2nσ2
n

.

Finally by assumption B2 we have c0n ≤ σ−2
n . Thus

P
(n)
θ∗

{
E0

[
n∑

i=1

ℓi(θ, θ
∗)

]
≤ −2Cu

(
1 +

[
C2c0/(εCℓ)

2
]1/2)

}
≤ ε,

which shows En [
∑n

i=1 ℓi(θ, θ
∗)] is Op(1). Combining the four bounds completes the proof.

4.4 α-Variational Bayes Risk Bound for GP-IVI

In developing risk bounds for parameter estimation, we use a slight variation of the standard

variational objective function for technical simplicity. α-variational Bayes (α-VB) (Yang et al.,

2020) is a variational inference framework that aims to minimize the KL divergence between the

variational density and the α-fractional posterior (Bhattacharya et al., 2019), defined as

Pα(θ ∈ B | Y (n)) =

∫
B [p(Y

(n) | θ)]αpθ(θ)dθ∫
Θ[p(Y

(n) | θ)]αpθ(θ)dθ
.

This leads to the following α-VB objective

q̂(θ) = argmin
q∈Q

D(q||pα(· | Y (n))) = argmin
q

αΨ(q), (4.5)
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where

Ψ(q) =

∫

Θ

q(θ) log

[
p(Y (n) | θ∗)
p(Y (n) | θ)

]
dθ − α−1D[q||pθ].

The variational expected log-likelihood ratio will be hence referred to as the model-fit term and

the remaining KL term will be hence referred to as the regularization term.

The importance of the α-VB framework comes from its ability to upper bound the variational

Bayesian risk, the integral of r(θ, θ∗) = n−1Dα[p
(n)
θ ||p(n)θ∗ ] with respect to q̂(θ), by the variational

objective Ψ(q). Minimizing the variational objective in turn minimizes the variational risk.

Before proceeding we motivate the form of our optimal risk bound. Consider preforming VI

over the unrestricted class of densities over Θ. Minimizing the α-VB risk bound is achieved by

balancing the two terms in terms in Ψ(q). By choosing

q(θ) =
pθ(θ)IBn(θ∗,ε)(θ)

Pθ [Bn(θ∗, ε)]
,

where Bn(θ
∗, ε) is defined in (4.3), the model-fit term can be shown to be of order Op(nε

2)

and the regularization term can be shown to be α−1 log[Pθ{Bn(θ
∗, ε)}−1], a multiple of the local

Bayesian complexity. This is the optimal risk bound for variational inference considering the class

of all distributions as the variational family (Yang et al., 2020). We summarize this in the theorem

below.

Theorem 4.2. Assume q̂µ,σ satisfies (4.5) and q̂µ,σ ≪ pθ. It holds with P
(n)
θ∗ -probability at least

1− 2/[(D − 1)2nε2] that,

∫
1

n
D(n)

α (θ, θ∗)q̂µ,σ(θ)dθ ≤ Dα

1− α
ε2 +

1

n(1− α)
log

{
Pθ [Bn(θ

∗, ε)]
−1

}
+O(n−1).

We provide a sketch of the proof below. The full proof can be found in section A.6 of the

supplementary file. Following our above motivation, we aim to show that there is a member of the

GP-IVI family QGP such that the model-fit term is of order Op(nε
2) and the regularization term is

proportional to the local Bayesian complexity. We leverage the approximation properties from §3

to construct an approximation that achieve this balance. We construct this variational distribution

as follows.
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Let the prior distribution of θ is given by the density pθ(θ) = f0(θ) ∈ Cβ[0, 1], β ∈ (2j, 2j + 2].

Let fβ = fj be the density constructed as in (2.5) satisfying ‖φσ ∗ fβ − f0‖∞ = O(σβ). Define the

density function

f̃β(t) =
fβ(t)IBn(θ∗,ε)∫
Bn(θ∗,ε)

fβ(t)dt
(4.6)

and its corresponding variational density

qf̃β ,σ(θ) =

∫ ∞

−∞

φσ(θ − t)f̃β(t)dt. (4.7)

The model-fit term is bounded in high probability using a straight forward application of Cheby-

chev’s inequality. Using (A.1), we bound the regularization term proportional to the local Bayesian

complexity. Combining these and using Theorem 3.2 of Yang et al. (2020) finishes the proof.

Assumption A1 Prior density pθ satisfies log[Pθ{Bn(θ
∗, ε)}−1] ≤ −nε2.

Remark 4.1. Let {pθ, θ ∈ Θ} be a parametric family of densities. Assume for θ, θ1, θ2, there exists

α > 0 such that D(θ∗‖θ) - ‖θ∗ − θ‖2α, µ2(θ
∗‖θ) - ‖θ∗ − θ‖2α, and ‖θ1 − θ2‖α - h(θ1, θ2) -

‖θ1−θ2‖α. Then if the prior measure possesses a density that is uniformly bounded away from zero

and infinity on Θ, then Assumption A1 is satisfied. Assumptions of this form are common in the

literature; refer to pg 517 (Ghosal et al., 2000b).

Corollary 4.1. Suppose the prior density pθ satisfies Assumption A1 and q̂ satisfies (4.5). It holds

with probability tending to one as n → ∞ that,

{∫
h2[p(· | θ)||p(· | θ∗)]q̂µ,σ(θ)dθ

}1/2

≤ O(n−1),

demonstrating that the risk bound is parametric even when a flexible class of variational approxi-

mation is used.

5 Conclusion

To summarize, we have provided theoretical properties of transformation-based model in non-

parametric and variational inferences in the context of NL-LVM. We characterized the space of

densities induced by NL-LVM as kernel convolutions with a general class of continuous mixing
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measures and showed L1 prior support of the transformation-based model. Placing a GP prior on

the transformation function, we obtain the optimal rate of posterior contraction up to a logarithmic

factor. Adopting the flexibility of GP-LVM we constructed GP-IVI. We have shown that GP-IVI

achieves both optimal α-VI risk bounds and optimal approximation to the true posterior. In doing

so, we have provided theoretical guarantees for a novel transformation-based implicit variational

inference.

A Proofs of results in the main document

A.1 Conventions

Equations in the main document are cited as (1), (2) etc., retaining their numbers, while new

equations defined in this document are numbered (S1), (S2) etc. In this section we collect the proof

of Proposition 2.1, Theorems 3.1, 3.2, 4.1 and 4.2.

A.2 Proof of Proposition 2.1

In this section we prove the results in Proposition 2.1.

Proposition 2.1 For f0 ∈ Cβ[0, 1] with β ∈ (2j, 2j+2] satisfying Assumptions F1 and F2, for

fβ defined as from the iterative procedure (2.5) we have

‖φσ ∗ fβ − f0‖∞ = O(σβ),

and

φσ ∗ fβ(x) = f0(x)(1 +D(x)O(σβ)), (A.1)

where

D(x) =
r∑

i=1

ci|lj(x)|
β

i + cr+1,

for non-negative constants ci, i = 1, . . . , r + 1, and for any x ∈ [0, 1].
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Proof. We now show equation (A.1). Following the proof of Lemma 1 in Kruijer et al. (2010),

for any x, y ∈ [0, 1],

log f0(y) ≤ log f0(x) +
r∑

i=1

lj(x)

j!
(y − x)j + L|y − x|β,

log f0(y) ≥ log f0(x) +
r∑

i=1

lj(x)

j!
(y − x)j − L|y − x|β.

Define

Bu
f0,r(x, y) =

r∑

i=1

lj(x)

j!
(y − x)j + L|y − x|β ,

Bl
f0,r(x, y) =

r∑

i=1

lj(x)

j!
(y − x)j − L|y − x|β .

Then we have

e
Bu

f0,r ≤ 1 +Bu
f0,r +

1

2!
(Bu

f0,r)
2 + · · ·+M |Bu

f0,r|
r+1,

e
Bl

f0,r ≥ 1 +Bl
f0,r +

1

2!
(Bl

f0,r)
2 + · · · −M |Bl

f0,r|
r+1.

where

M =
1

(r + 1)!
exp

{
sup

x,y∈[0,1],x 6=y

(∣∣∣∣
r∑

j=1

lj(x)

j!
(y − x)j

∣∣∣∣+ L|y − x|β
)}

.

Note that f0 is bounded on [0, 1], we consider the convolution on the whole real line by extending

f0 analytically outside [0, 1]. For β ∈ (1, 2], r = 1 and x ∈ (0, 1),

φσ ∗ f0(x) ≤ f0(x)

∫
eB

u
f0,r(x,y)φσ(y − x)dy

≤ f0(x)

∫

R

φσ(y − x)[1 + L|y − x|β +M{l21(x)(y − x)2 + 2Ll1(x)(y − x)|y − x|β + L2|y − x|2β}]dy. (A.2)

Since lj(x)’s are all continuous on [0, 1], there exist finite constants Mj such that |lj | ≤ Mj and

|y − x| ≤ 1. The integral in the last inequality in (A.2) can be bounded by

∫

R

φσ(y − x)[1 + L|y − x|β +M{M2−β
1 |l1(x)(y − x)|β + (L2 + 2M1)|y − x|β}]dy

20



Therefore,

φσ ∗ f0(x) ≤ f0(x){1 + (r1|l1(x)|β + r2)σ
β},

where r1 = MM2−β
1 µT

β, r2 = L(1 +ML+ 2MM1)µ
T

β , and µT

β = E{|y − x|β}.
In the other direction,

φσ ∗ f0(x) ≥ f0(x)

∫
φσ(y − x)[{1 − L|y − x|β −M{l21(x)(y − x)2 − 2Ll1(x)(y − x)|y − x|β + L2|y − x|2β}]dy.

Thus we achieve expression of φσ ∗ fβ in Proposition 2.1.

For any β > 2 and the integer j such that β ∈ (2j, 2j + 2]. We define φ(i) ∗ f as the i-folded

convolution of φ with f for any integer i ≥ 1. First we calculate φσ ∗ f0(x), φ
(2)
σ ∗ f0(x), . . . ,

φ
(j)
σ ∗ f0(x), and by Lemma B.3 we get φσ ∗ fj(x). The calculation of φ

(i)
σ ∗ f0(x) is the same as

that of φσ ∗ f0(x) except taking the convolution with φ√
iσ. The terms σ2, σ4, . . . , σ2j caused

by the factors containing |y − x|k for k < β in φ
(i)
σ ∗ f0 can be canceled out by Lemma B.3. For

terms containing |y − x|k for k ≥ β, we take out |y − x|β and bound the rest by a certain power

of |lj(x)| or some constant. Following an induction in Kruijer et al. (2010), we can guarantee the

approximation error of φσ ∗ fβ is at the order of O(σβ).

A.3 Proof of Theorem 3.1

Theorem 3.1. If Πµ has full sup-norm support on C[0, 1] and Πσ has full support on [0,∞),

then the L1 support of the induced prior Π on F contains all densities f0 which have a finite first

moment and are non-zero almost everywhere on their support.

Proof. Let f0 be a density with quantile function µ0 that satisfies the conditions of Theorem 3.1.

Observe that ‖µ0‖1 =
∫ 1
t=0 |µ0(t)| dt =

∫∞
−∞ |z| f0(z)dz < ∞ since f0 has a finite first moment,

and thus µ0 ∈ L1[0, 1]. Fix ǫ > 0. We want to show that Π{Bǫ(f0)} > 0, where Bǫ(f0) =

{f : ‖f − f0‖1 < ǫ}.

Note that µ0 /∈ C[0, 1], so that P(‖µ− µ0‖∞ < ǫ) can be zero for small enough ǫ. The main idea

is to find a continuous function µ̃0 close to µ0 in L1 norm and exploit the fact that the prior on µ

places positive mass to arbitrary sup-norm neighborhoods of µ̃0. The details are provided below.
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Since ‖φσ ∗ f0 − f0‖1 → 0 as σ → 0, find σ1 such that ‖φσ ∗ f0 − f0‖1 < ǫ/2 for σ < σ1. Pick

any σ0 < σ1. Since C[0, 1] is dense in L1[0, 1], for any δ > 0, we can find a continuous function µ̃0

such that ‖µ0 − µ̃0‖1 < δ. Now,
∥∥fµ,σ − fµ̃0,σ

∥∥
1
≤ C ‖µ− µ̃0‖1 /σ for a global constant C. Thus,

for δ = ǫ σ0/4,

{
fµ,σ : σ0 <σ < σ1, ‖µ− µ̃0‖∞ < δ

}
⊂

{
fµ,σ : ‖f0 − fµ,σ‖1 < ǫ

}
,

since ‖f0 − fµ,σ‖1 < ‖f0 − fµ0,σ‖1 +
∥∥fµ0,σ − fµ̃0,σ

∥∥
1
+

∥∥fµ̃0,σ − fµ,σ
∥∥
1
and fµ0,σ = φσ ∗ f0. Thus,

Π{Bǫ(f0)} > Πµ(‖µ− µ̃0‖∞ < δ)Πσ(σ0 < σ < σ1) > 0, since Πµ has full sup-norm support and

Πσ has full support on [0,∞).

A.4 Proof of Theorem 3.2

In this section we will give a detailed proof for the adaptive posterior contraction rate result for

the NL-LVM models.

Theorem 3.2. If f0 satisfies Assumptions F1 and F2 and the priors Πµ and Πσ are as in

Assumptions P1 and P2 respectively, the best obtainable rate of posterior convergence relative to

Hellinger metric h is

ǫn = n− β

2β+1 (log n)t, (A.3)

where t = β(2 ∨ q)/(2β + 1) + 1.

Proof. Following Ghosal et al. (2000a), to obtain the posterior convergence rate we need to find

sequences ǭn, ǫ̃n → 0 with nmin{ǭ2n, ǫ̃2n} → ∞ such that there exist constants C1, C2, C3, C4 > 0

and sets Fn ⊂ F so that,

logN(ǭn,Fn, d) ≤ C1nǭ
2
n, (A.4)

Π(Fc
n) ≤ C3 exp{−nǫ̃2n(C2 + 4)}, (A.5)

Π

(
fµ,σ :

∫
f0 log

f0
fµ,σ

≤ ǫ̃2n,

∫
f0 log

(
f0
fµ,σ

)2

≤ ǫ̃2n

)
≥ C4 exp{−C2nǫ̃

2
n}. (A.6)
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Then we can conclude that for ǫn = max{ǭn, ǫ̃n} and sufficiently large M > 0, the posterior

probability

Πn(fµ,σ : d(fµ,σ, f0) > Mǫn|Y1, . . . , Yn) → 0 a.s.Pf0 ,

where Pf0 denotes the true probability measure whose the Radon-Nikodym density is f0. To

proceed, we consider the Gaussian process µ ∼ WA given A, with A satisfying Assumption P1.

We will first verify (A.6) along the lines of Ghosal and van der Vaart (2007). Recall fβ is defined

as from (2.5), by Lemma B.5 we guarantee that fβ is a well-defined density. Denote by µβ = F−1
β

the quantile function of fβ, then we have fµβ ,σ = φσ ∗ fβ. Note that

h2(f0, fµ,σ) - h2(f0, fµβ ,σ) + h2(fµβ ,σ, fµ,σ). (A.7)

Under Assumptions F1 and F2 and by Lemma B.6, one obtains

h2(f0, fµβ ,σ) ≤
∫

f0 log

(
f0

fµβ ,σ

)
- O(σ2β). (A.8)

From Lemma B.1 and the following remark, we obtain

h2(fµβ ,σ, fµ,σ) -
‖µ− µβ‖2∞

σ2
. (A.9)

From Lemma 8 of Ghosal and van der Vaart (2007), one has

∫
f0 log

(
f0
fµ,σ

)i

≤ h2(f0, fµ,σ)

(
1 + log

∥∥∥∥
f0
fµ,σ

∥∥∥∥
∞

)i

, (A.10)

for i = 1, 2.

From (A.7)-(A.10), for any b ≥ 1 and ǫ̃2n = σ2β
n ,

{
σ ∈ [σn, 2σn], ‖µ− µβ‖∞ - σβ+1

n

}
⊂

{∫
f0 log

f0
fµ,σ

- σ2β
n ,

∫
f0 log

(
f0
fµ,σ

)2

- σ2β
n

}
.
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Since µβ ∈ Cβ+1[0, 1], from Section 5.1 of van der Vaart and van Zanten (2009),

Πµ(‖µ− µβ‖∞ ≤ 2δn) ≥ C4 exp

{
− C5(1/δn)

1

β+1 log

(
1

δn

)2∨q}
(C6/δn)

(p+1)/(β+1),

for δn → 0 and constants C4, C5, C6 > 0. Letting δn = σβ+1
n , we obtain

Πµ(‖µ− µβ‖∞ ≤ 2δn) ≥ exp

{
− C7

(
1

σn

)
log

(
1

σβ+1
n

)2∨q}
,

for some constant C7 > 0. Since σ ∼ IG(aσ , bσ), we have

Πσ(σ ∈ [σn, 2σn]) =
baσσ

Γ(aσ)

∫ 2σn

σn

x−(aσ+1)e−bσ/xdx

≥ baσσ
Γ(aσ)

∫ 2σn

σn

e−2bσ/xdx

≥ baσσ
Γ(aσ)

σn exp{−bσ/σn}

≥ exp{−C8/σn},

for some constant C8 > 0. Hence

Π{σ ∈ [σn, 2σn], ‖µ− µβ‖∞ - σβ+1
n } ≥ exp

{
− C7

(
1

σn

)
log

(
1

σβ+1
n

)2∨q}
exp{−C8/σn}

≥ exp

{
− 2C9

(
1

σn

)
log

(
1

σβ+1
n

)2∨q}
.

Then (A.6) will be satisfied with ǫ̃n = n−β/(2β+1) logt1(n), where t1 = β(2 ∨ q)/(2β + 1) and some

C9 > 0. Next we construct a sequence of subsets Fn such that (A.4) and (A.5) are satisfied with

ǭn = n−β/(2β+1) logt2 n and ǫ̃n for some global constant t2 > 0.

Now we construct the sieves for F . Letting H
a
1 denote the unit ball of RKHS of the Gaussian

process with rescaled parameter a and B1 denote the unit ball of C[0, 1] and given positive sequences

Mn, rn, define

Bn = ∪a<rn(MnH
a
1) + δ̄nB1,
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as in van der Vaart and van Zanten (2009), with δ̄n = ǭnln/K1,K1 = 2(2/π)1/2 and let

Fn = {fµ,σ : µ ∈ Bn, ln < σ < hn}.

First we need to calculate N(ǭn,Fn, ‖·‖1). Observe that for σ2 > σ1 > σ2/2,

‖fµ1,σ1
− fµ2,σ2

‖1 ≤
(
2

π

)1/2 ‖µ1 − µ2‖∞
σ1

+
3(σ2 − σ1)

σ1
.

Taking κn = min{ǭn/6, 1} and σn
m = ln(1 + κn)

m,m ≥ 0, we obtain a partition of [ln, hn] as

ln = σn
0 < σn

1 < · · · < σn
mn−1 < hn ≤ σn

mn
with

mn =

(
log

hn
ln

)
1

log(1 + κn)
+ 1. (A.11)

One can show that 3(σn
m − σn

m−1)/σ
n
m−1 = 3κn ≤ ǭn/2. Let {µ̃n

k , k = 1, . . . , N(δ̄n, Bn, ‖·‖∞)} be a

δ̄n-net of Bn. Now consider the set

{(µ̃n
k , σ

n
m) : k = 1, . . . , N(δ̄n, Bn, ‖·‖∞), 0 ≤ m ≤ mn}. (A.12)

Then for any f = fµ,σ ∈ Fn, we can find (µ̃n
k , σ

n
m) such that ‖µ− µ̃n

k‖∞ < δ̄n. In addition, if one

has σ ∈ (σn
m−1, σ

n
m], then

∥∥fµ,σ − fµn
k
,σn

m

∥∥
1
≤ ǭn.

Hence the set in (A.12) is an ǭn-net of Fn and its covering number is given by

mnN(δ̄n, Bn, ‖·‖∞).

From the proof of Theorem 3.1 in van der Vaart and van Zanten (2009), for anyMn, rn with rn > 0,

we obtain

logN(2δ̄n, Bn, ‖·‖∞) ≤ K2rn

(
log

(
Mn

δ̄n

))2

. (A.13)
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Again from the proof of Theorem 3.1 in van der Vaart and van Zanten (2009), for rn > 1 and for

M2
n > 16K3rn(log(rn/δ̄n))

2, we have

P(WA /∈ Bn) ≤
K4r

p
ne−K5rn logq rn

K5 log
q rn

+ exp{−M2
n/8}, (A.14)

for constants K3,K4,K5 > 0.

Next we calculate P(σ /∈ [ln, hn]). Observe that

P(σ /∈ [ln, hn]) = P(σ−1 < h−1
n ) + P(σ−1 > l−1

n )

≤
∞∑

k=ασ

e−bσh
−1
n (bσh

−1
n )k

k!
+

baσσ
Γ(aσ)

∫ ∞

l−1
n

e−bσx/2dx

≤ e−aσ log(hn) +
baσσ

Γ(aσ)
e−bσ l

−1
n /2. (A.15)

Thus with hn = O(exp{n1/(2β+1)(log n)2t1}), ln = O(n−1/(2β+1)(log n)−2t1), rn = O(n1/(2β+1)(log n)2t1),

Mn = O(n1/(2β+1)(log n)t1+1), (A.14) and (A.15) implies

Π(Fc
n) = exp{−K6nǫ̃

2
n},

for some constant K6 > 0, which guarantees that (A.5) is satisfied with ǫ̃n = n−β/(2β+1)(log n)t1 .

Also with ǭn = n−β/(2β+1)(log n)t1+1, it follows from (A.11) and (A.13) that

logN(ǭn,Fn, ‖·‖1) ≤ K7n
1/(2β+1)(log n)2t1+2,

for some constant K7 > 0. Hence max{ǭn, ǫ̃n} = n−β/(2β+1)(log n)t1+1.

A.5 Proof of Theorem 4.1

In this section, we present the detailed proof of the high probability bound for KL divergence be-

tween the true posterior and its α-VB approximation in the case of the GP-IVI.

Theorem 4.1. Under assumptionsB1 throughB5 it hold thatm∗
n(Qn) = minq∈Qn

{
D[q||p(· | Y (n))]

}

is bounded in probability with respect to the data generating distribution. Formally, given any
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ε > 0, there exists Mε, Nε > 0 such that for n ≥ Nε, we have P
(n)
θ∗ (m∗

n(Qn) > Mε) ≤ ε.

The objective m∗
n(Qn) can be bounded above by D[q||p(Y (n) | θ)] for any q ∈ Qn. Choosing q

as a particular univariate Gaussian centered at the true parameter with variance satisfying our

assumptions B1-B5 allows us to bound the KL divergence between the true posterior p(Y (n) | θ)

in high P
(n)
θ∗ -probability.

Proof. It follows from the definition of m∗
n(Qn) that for any q ∈ Qn

m∗
n(Qn) ≤ D(q||p(· | Y (n))).

Choose µn to be the quantile function of the distribution N(θ∗, σ2
n). Define the variational distri-

bution

qn(θ) =

∫
φσ(θ − µn(u))du,

where σn satisfies assumption B2. By change of measure,

∫
φσ(θ − µn(u))du =

∫
φσ(θ − t)φσn(t− θ∗)dt = N(θ; θ∗, σ2 + σ2

n).

Therefore qn(θ) = N(θ; θ∗, σ2 + σ2
n) ∈ Qn. Denote by En the mean respect to qn. Expanding

D(qn||p(Y (n) | θ)),

En

[
log

qn(θ)

p(Y (n) | θ)(θ)

]
= En[log qn] + En[U(θ)] + logm(Y (n))− En [Ln(θ, θ

∗)] ,

where Ln(θ, θ
∗) =

∑n
i=1 ℓi(θ, θ

∗). Since the sum of Op(1) terms is Op(1), it suffices to show that

each of the terms in the above sum is Op(1). The first term En[log qn], the differential entropy of

qn, is a constant and is Op(1). A straight forward application of Markov’s inequality along with

the fact that E
(n)
θ∗ [m(Y (n))] = 1 shows that logm(Y (n)) is Op(1).

Next, expand each of the functions D(θ∗||θ), µ2(θ
∗||θ), and U(θ) using a multivariate Taylor
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expansion around θ∗. Applying assumptions B4 and B5 shows

En[U(θ)] ≤ C1(σ
2 + σ2

n),

En[µ2(θ
∗||θ)] ≤ C2(σ

2 + σ2
n), (A.16)

En[D(θ∗||θ)] ≤ Cu(σ
2 + σ2

n), (A.17)

En[D(θ∗||θ)] ≥ Cℓ(σ
2 + σ2

n). (A.18)

Markov’s inequality shows that U(θ) isOp(1). We will use Chebychev’s inequality to show En [
∑n

i=1 ℓi(θ, θ
∗)]

is Op(1). Given ε > 0, choose δ =
[
C2c0/(εCℓ)

2
]1/2

. Using (A.16)-(A.18) and noting that

−E
(n)
θ∗ {Ln(θ, θ

∗)} = nD(θ∗||θ), we have

P
(n)
θ∗

{
En[Ln(θ, θ

∗)] ≤ −Cu(1 + δ)n(σ2 + σ2
n)
}
≤ P

(n)
θ∗ {En[Ln(θ, θ

∗)] ≤ −(1 + δ)nEn[D(θ∗||θ)]}

≤ P
(n)
θ∗

{
1√
n
En[Ln(θ, θ

∗)− E
(n)
θ∗ {Ln(θ

∗, θ)}] ≤ −δ
√
nEn[D(θ∗||θ)]

}

≤ Var
(n)
θ∗ (En[ℓ1(θ, θ

∗)])

δ2n (En[D(θ∗||θ)])2
≤ En[µ2(θ

∗||θ∗)]
δ2n (En[D(θ∗||θ)])2

≤ C2(σ
2 + σ2

n)

δ2nCℓ(σ2 + σ2
n)

2
≤ C2

δ2nC2
ℓ (σ

2 + σ2
n)

≤ C2

δ2nC2
ℓ σ

2
n

.

Applying assumption B2 we have c
−1/2
0 n−1/2 ≤ σn ≤ n−1/2. This gives

P
(n)
θ∗

{∫
Ln(θ, θ

∗)qn(θ)dθ ≤ −2Cu(1 + (C2c0/(εC
2
ℓ ))

1/2)

}
≤ P

(n)
θ∗

{∫
Ln(θ, θ

∗)qn(θ)dθ ≤ −Cu(1 + δ)n(σ2 + σ2
n)

}
≤ ε.

Thus En[Ln(θ, θ
∗)] is Op(1). This completes the proof.

A.6 Proof of Theorem 4.2

In this section, we present the detailed proof of the Bayesian risk bound for α-variational inference

in the case of the GP-IVI model. We also present a proof of the corollary for the Hellinger risk

bound. The main theorem and the lemmas are restated here for convenience. Our risk bound is

based of the following theorem,

Theorem A.1 (Yang et al. (2020)). For any ζ ∈ (0, 1), it holds with P
(n)
θ∗ -probability at least (1−ζ)
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that for any probability measure q ∈ Q with q ≪ pθ,

∫
1

n
Dα[p

(n)
θ ||p(n)θ∗ ]q̂(θ)dθ ≤ αΨ(q) + log(1/ζ)

n(1− α)
.

The GP-IVI risk bound is stated as follows.

Theorem 4.2. Assume q̂µ,σ satisfies (4.5) and q̂µ,σ ≪ pθ. It holds with P
(n)
θ∗ -probability at

least 1− 2/[(D − 1)2(1 +O(n−2))nε2] that,

∫
1

n
D(n)

α (θ, θ∗)q̂µ,σ(θ)dθ ≤ Dα

1− α
ε2 +

1

n(1− α)
log

{
Pθ [Bn(θ

∗, ε)]−1
}
+O(n−1).

The desired risk bound follows from bounding the right hand side of Theorem 3.2 of Yang et al.

(2020)

α

n(1− α)
Ψ(qµ,σ) :=

α

n(1− α)

[∫
qµ,σ(θ) log

p(Y (n) | θ∗)
p(Y (n) | θ) dθ +

1

α
D(qµ,σ||pθ)

]

in high P
(n)
θ∗ -probability in terms of the local Bayesian complexity log Pθ(Bn(θ

∗, ε)). By choosing a

particular member of the variational family we can bound both the likelihood ratio integral as well

as the KL divergence between the prior and the variational approximation. The relation between

the variational distribution and the local Bayesian complexity come from the KL divergence term.

Proof. We will construct a special choice of µ as follows. Denote pθ(θ) = f0(θ). Let Bn(θ
∗, ε) be

as in (4.3). Define the truncated densities

f̃0(t) =
f0(t)IBn(θ∗,ε)(t)∫
Bn(θ∗,ε)

f0(u)du
=

f0(t)IBn(θ∗,ε)(t)

Pθ(Bn(θ∗, ε))
, f̃β(t) =

fβ(t)IBn(θ∗,ε)(t)∫
Bn(θ∗,ε)

fβ(u)du
,

where fβ is constructed by procedure (2.5) such that ‖φσ ∗ fβ − f0‖∞ = O(σβ) along with its

associated distribution functions

F̃0(t) =

∫

(−∞,t]∩Bn(θ∗,ε)
f̃0(t)dt, F̃β(t) =

∫

(−∞,t]∩Bn(θ∗,ε)
f̃β(t)dt.

Define the quantile function of F̃β as µ̃(t) = F̃−1
β (t). This can be used to define the variational
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density

q
f̃β ,σ

(θ) =

∫

[0,1]
φσ(θ − µ̃(η))dη =

∫ ∞

−∞
φσ(θ − t)f̃β(t)dt = φσ ∗ f̃β(θ),

with σ > 0 a bandwidth that will be specified later in the proof. The main tool for the proof will

be from Proposition 2.1

q
f̃β ,σ

(θ) = φσ ∗ f̃β(θ) ≤ f̃0(θ)(1 +D(θ)O(σβ)). (A.19)

Denote MD = supBn(θ∗,ε)D(θ) and Kβ(σ) = 1+MDO(σβ). We will now bound the model-fit term.

Denote the random variable

H(Y (n), f̃β, σ) =

∫
q
f̃β ,σ

(θ) log[p(Y (n) | θ∗)/p(Y (n) | θ)]dθ.

The mean and variance (with respect to the data generating distribution) of the model-fit term are

bounded by applying (A.19),

E
(n)
θ∗ [H(Y (n), f̃β, σ)] =

∫
D[p(Y (n) | θ∗)||p(Y (n) | θ)]q

f̃β ,σ
(θ)dθ

≤
∫

D[p(Y (n) | θ∗)||p(Y (n) | θ)]f̃0(θ)(1 +D(θ)O(σβ))dθ

≤ Kβ(σ)

∫

B(θ∗,ε)
D[p(Y (n) | θ∗)||p(Y (n) | θ)] f0(θ)

Pθ[Bn(θ∗, ε)]
dθ

≤ Kβ(σ)nε
2,

and

Var
(n)
θ∗ [H(Y (n), µ̃, σ)] ≤

∫
V [p(Y (n) | θ∗)||p(Y (n) | θ)]q

f̃β ,σ
(θ)dθ

≤
∫

V [p(Y (n) | θ∗)||p(Y (n) | θ)]f̃0(θ)(1 +D(θ)O(σβ))dθ

≤ Kβ(σ)

∫

B(θ∗,ε)
V [p(Y (n) | θ∗)||p(Y (n) | θ)] f0(θ)

Pθ[Bn(θ∗, ε)]
dθ

≤ Kβ(σ)nε
2.
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It follows from Chebyshev’s inequality that with P
(n)
θ∗ -probability at least 1−1/[(D−1)2Kβ(σ)nε

2]

∫
q
f̃β ,σ

(θ) log

[
p(Y (n) | θ∗)
p(Y (n) | θ)

]
dθ ≤ DKβ(σ)nε

2.

Next we will bound the regularization in terms of the local Bayesian complexity. Using (A.19) we

can bound the KL divergence,

D[q
f̃β ,σ

||pθ] =
∫

q
f̃β ,σ

(θ) log

[
q
f̃β ,σ

(θ)

f0(θ)

]
dθ ≤

∫
log

[
f̃0(θ)(1 +O(D(θ)σβ))

f0(θ)

]
f̃0(θ)(1 +O(D(θ)σβ))dθ.

Expanding f̃0(θ) and making use of the convention IBn(θ∗,ε)(θ) log(IBn(θ∗,ε)(θ)) = 0 for θ /∈ Bn(θ
∗, ε)

we have

∫
log

[
f0(θ)IBn(θ∗,ε)(1 +O(D(θ)σβ))

f0(θ)Pθ[Bn(θ∗, ε)]

]
f0(θ)IBn(θ∗,ε)

Pθ[Bn(θ∗, ε)]
(1 +O(D(θ)σβ))dθ

=

∫

Bn(θ∗,ε)

log

[
(1 +O(D(θ)σβ))

Pθ[Bn(θ∗, ε)]

]
f0(θ)

Pθ[Bn(θ∗, ε)]
(1 +O(D(θ)σβ))dθ

≤ Kβ(σ) log

[
Kβ(σ)

Pθ(Bn(θ∗, ε))

]∫

Bn(θ∗,ε)

f0(θ)

Pθ[Bn(θ∗, ε)]
dθ

= Kβ(σ) log

[
Kβ(σ)

Pθ(Bn(θ∗, ε))

]
.

Combining the bounds from both parts, we have with probability at least 1−1/[(D−1)2Kβ(σ)nε
2]

that

Ψ(q
f̃β ,σ

) ≤ DKβ(σ)nε
2 + α−1Kβ(σ) logKβ(σ) + α−1Kβ(σ) log

{
Pθ[Bn(θ

∗, ε)]−1
}
.

Choosing ζ = 1/[(D − 1)2Kβ(σ)nε
2]. It follows from the union bound for probabilities, we have

with probability at least 1− 2/[(D − 1)2Kβ(σ)nε
2] that

∫
1

n
D(n)

α (θ, θ∗)q̂µ,σ(θ)dθ ≤

αDKβ(σ)nε
2 +Kβ(σ) logKβ(σ) +Kβ(σ) log

{
Pθ[Bn(θ

∗, ε)]−1
}
+ log((D − 1)2Kβ(σ)nε

2)

n(1− α)

≤ Kβ(σ)

(
Dα

1− α
ε2 +

1

n(1− α)
log

{
Pθ[Bn(θ

∗, ε)]−1
}
+O(n−1)

)
.
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Recall that Kβ(σ) = 1 +O(σβ). Choosing σ = n−2/β gives

∫
1

n
D(n)

α (θ, θ∗)q̂µ,σ(θ)dθ ≤ Kβ(σ)

(
Dα

1− α
ε2 +

1

n(1− α)
log

{
Pθ[Bn(θ

∗, ε)]−1
}
+O(n−1)

)

≤ Dα

1− α
ε2 +

1

n(1− α)
log

{
Pθ[Bn(θ

∗, ε)]−1
}
+O(n−1) +O(n−2).

Corollary 4.1. Suppose the prior density pθ satisfies Assumption A1 and q̂ satisfies (4.5). It

holds with probability tending to one as n → ∞ that,

{∫
h2(p(· | θ), p(· | θ∗))q̂µ,σ(θ)dθ

}1/2

≤ O(n−1),

demonstrating that the risk bound is parametric even when a flexible class of variational approxi-

mation is used.

Proof. For IID data n−1D
(n)
α (θ, θ∗) = Dα[pθ||pθ∗ ]. Applying Theorem 4.2 with ε = n−1 and As-

sumption A1 yields,

∫
1

n
D(n)

α (θ, θ∗)q̂µ,σ(θ)dθ ≤ Dα

1− α
ε2 +

1

n(1− α)
log

{
Pθ[Bn(θ

∗, ε)]−1
}
+O(n−1)

≤ Dα− 1

n2(1− α)
+O(n−1) = O(n−2) +O(n−1).

Combining the above with the fact that max{1, (1−α)−1α}h2(p, q) ≤ Dα[p||q] competes the proof.

B Auxiliary results

In this section, we summarize results used in the proofs of main theorems in the main document.

First to guarantee that the model (2.1) leads to the optimal rate of convergence, we start from

deriving sharp bounds for the Hellinger distance between fµ1,σ1
and fµ2,σ2

for µ1, µ2 ∈ C[0, 1] and

σ1, σ2 > 0. We summarize the result in the following Lemma B.1.
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Lemma B.1. For µ1, µ2 ∈ C[0, 1] and σ1, σ2 > 0,

h2(fµ1,σ1
, fµ2,σ2

) ≤ 1−
√

2σ1σ2
σ2
1 + σ2

2

exp

{
− ‖µ1 − µ2‖2∞

4(σ2
1 + σ2

2)

}
. (B.1)

Proof. Note that by Hölder’s inequality,

fµ1,σ1
(y)fµ2,σ2

(y) ≥
{∫ 1

0

√
φσ1

(y − µ1(x))
√

φσ2
(y − µ2(x))dx

}2

.

Hence,

h2(fµ1,σ1
, fµ2,σ2

) ≤
∫ [ ∫ 1

0
φσ1

(y − µ1(x))dx +

∫ 1

0
φσ2

(y − µ2(x))dx

− 2

∫ 1

0

√
φσ1

(y − µ1(x))
√

φσ2
(y − µ2(x))dx

]
dy.

By changing the order of integration (applying Fubini’s theorem since the function within the

integral is jointly integrable) we get

h2(fµ1,σ1
, fµ2,σ2

) ≤
∫ 1

0
h2(fµ1(x),σ1

, fµ2(x),σ2
)dx

=

∫ 1

0

[
1−

√
2σ1σ2
σ2
1 + σ2

2

exp

{
− (µ1(x)− µ2(x))

2

4(σ2
1 + σ2

2)

}]
dx

≤ 1−
√

2σ1σ2
σ2
1 + σ2

2

exp

{
− ‖µ1 − µ2‖2∞

4(σ2
1 + σ2

2)

}
.

Remark B.1. When σ1 = σ2 = σ, h2(fµ1,σ, fµ2,σ) ≤ 1 − exp
{
‖µ1 − µ2‖2∞ /8σ2

}
, which implies

that h2(fµ1,σ, fµ2,σ) - ‖µ1 − µ2‖2∞ /σ2.

Remark B.2. The standard inequality h2(fµ1,σ1
, fµ2,σ2

) ≤ ‖fµ1,σ1
− fµ2,σ2

‖1 relating the Hellinger

distance to the total variation distance leads to the cruder bound

h2(fµ1,σ1
, fµ2,σ2

) ≤ C1
‖µ1 − µ2‖∞
(σ1 ∧ σ2)

+ C2
|σ2 − σ1|
(σ1 ∧ σ2)

,

which is linear in ‖µ1 − µ2‖∞. This bound is less sharp than what is obtained in Lemma B.1 and
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does not suffice for obtaining the optimal rate of convergence.

In order to apply Lemma 8 in Ghosal and van der Vaart (2007) to control the Kullback–

Leibler divergence between the true density f0 and the model fµ,σ, we derive an upper bound

for log ‖f0/fµ,σ‖∞ in Lemma B.2.

Lemma B.2. If f0 satisfies Assumption F2,

log

∥∥∥∥
f0
fµ,σ

∥∥∥∥
∞

≤ C +
‖µ− µ0‖2∞

σ2
(B.2)

for some constant C > 0.

Proof. Note that

fµ,σ(y) =
1√
2πσ

∫ 1

0
exp

{
− (y − µ(x))2

2σ2

}
dx

≥ 1√
2πσ

∫ 1

0
exp

{
− (y − µ0(x))

2

σ2

}
dx exp

{
− ‖µ− µ0‖2∞

σ2

}

≥ Cφσ/
√
2 ∗ f0(y) exp

{
− ‖µ− µ0‖2∞

σ2

}

≥ Cf0(y) exp

{
− ‖µ− µ0‖2∞

σ2

}
,

where the last inequality follows from Lemma 6 of Ghosal and van der Vaart (2007) since f0 is

compactly supported by Assumption F2. This provides the desired inequality.

Lemma B.3. Let j ≥ 0 be the integer such that β ∈ (2j, 2j + 2], and the sequence of fj is

constructed by the procedure in (2.5). Then we have fβ =
∑j

i=0(−1)i
(j+1
i+1

)
φ
(i)
σ ∗f0, where φ

(i)
σ ∗f0 =

φσ ∗ · · · ∗ φσ ∗ f0, the i-fold convolution of φσ with f0.

Proof. Consider fj constructed by (2.5). When j = 1, f1 = 2f0 − φσ ∗ f0, so the form holds. By
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induction, suppose this form holds for j > 1, then

fj+1 = f0 − (φσ ∗ fj − fj)

= f0 +

j∑

i=0

(−1)i+1

(
j + 1

i+ 1

)
φ(i+1)
σ ∗ f0 +

j∑

i=0

(−1)i
(
j + 1

i+ 1

)
φ(i)
σ ∗ f0

= (j + 2)f0 +

j+1∑

i=1

(−1)i
(
j + 1

i+ 1

)
φ(i)
σ ∗ f0 +

j∑

i=1

(−1)i
(
j + 1

i

)
φ(i)
σ ∗ f0

= (j + 2)f0 +

j∑

i=1

(−1)i
((

j + 1

i+ 1

)
+

(
j + 1

i

))
φ(i)
σ ∗ f0 + (−1)j+1φ(i+1)

σ ∗ f0

= (j + 2)f0 +

j∑

i=1

(−1)i
(
j + 2

i+ 1

)
φ(i)
σ ∗ f0 + (−1)j+1φ(i+1)

σ ∗ f0

=

j+1∑

i=0

(−1)i
(
j + 2

i+ 1

)
φ(i)
σ ∗ f0.

It holds for j + 1, which completes the proof.

Lemma B.4. Let f0 satisfy Assumptions F1 and F2. With Aσ = {x : f0(x) ≥ σH}, we have

∫

Ac
σ

f0(x)dx = O(σ2β),

∫

Ac
σ

φσ ∗ fj(x)dx = O(σ2β), (B.3)

for all non-negative integer j, sufficiently small σ and sufficiently large H.

Proof. Under Assumption F2 there exists (a, b) ⊂ [0, 1] such that Ac
σ ⊂ [0, a) ∪ (b, 1] if we choose

σ sufficiently small, so that f0(x) ≤ σH for x ∈ Ac
σ. Therefore,

∫
Ac

σ
f0(x) ≤ σH ≤ O(σ2β) if we

choose H ≥ 2β. Using Proposition 2.1,

∫

Ac
σ

φσ ∗ fj(x)dx =

∫

Ac
σ

f0(x){1 +O(D(x)σβ)} ≤ O(σH).

With bounded D(x) and H ≥ 2β it is easy to bound the second integral in (B.3) by O(σ2β).

Lemma B.5. Suppose f0 satisfies Assumptions F1 and F2. For β > 2 and the integer j such that

β ∈ (2j, 2j + 2], fβ is a density function.

Proof. To show fβ is a density function, it suffices to show fβ is non-negative, since a simple

calculation shows that
∫
fβ = 1 for j ≥ 0. Following the proof of Lemma 2 in Kruijer et al. (2010),
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we treat log f0 as a function in C2[0, 1] and obtain the same form of φσ ∗ f0 as in (A.1). For small

enough σ we can find ρ1 ∈ (0, 1) very close to 0 such that

φσ ∗ f0(x) = f0(x)(1 +O(D(2)(x)σ2)) < f0(x)(1 + ρ1),

where D(2) contains |l1(x)| and |l2(x)| to certain power, so D(2) is bounded. Then we have

f1(x) = 2f0(x)−Kσf0(x) > 2f0(x)− f0(x)(1 + ρ1) = f0(x)(1 − ρ1).

Then we treat log f0 as a function with β = 4, j = 1. Similarly, we can get

φσ ∗ f1(x) = f0(x)(1 +O(D(4)(x)σ4)),

where D(4) contains |l1(x)|, . . . , |l4(x)|. We can find 0 < ρ2 < ρ1 such that φσ∗f1(x) < f0(x)(1+ρ2),

then can get

f2(x) = f0(x)− (φσ ∗ f1(x)− f1(x)) > f0(x)(1 − ρ1 − ρ2) > f0(x)(1 − 2ρ1).

Continuing this procedure, we can get fj(x) > f0(x)(1−jρ1) with sufficiently small σ and 1−jρ1 ∈

(0, 1) and it is close to 1. Then we show fj is non-negative.

Lemma B.6. Let f0 satisfy Assumptions F1 and F2 and let j be the integer such that β ∈

(2j, 2j + 2]. Then we show that the density fβ obtained by (2.5) satisfies

∫
f0(x) log

f0(x)

φσ ∗ fβ(x)
= O(σ2β), (B.4)

for sufficiently small σ and all x ∈ [0, 1].

Proof. Again consider the set Aσ = {x : f0(x) ≥ σH} with arbitrarily large H. We separate the
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Kullback–Leibler divergence into

∫

[0,1]
f0 log

f0
φσ ∗ fβ

=

∫

[0,1]∩Aσ

f0 log
f0

φσ ∗ fβ
+

∫

[0,1]∩Ac
σ

f0 log
f0

φσ ∗ fβ

≤
∫

Aσ

(f0 − φσ ∗ fβ)2
φσ ∗ fβ

+

∫

Ac
σ

(φσ ∗ fβ − f0) +

∫

Ac
σ

f0 log
f0

φσ ∗ fβ
. (B.5)

Under Assumption F2 and by Remark 3 in Ghosal et al. (1999), for small enough σ there exists

a constant C such that φσ ∗ f0 ≥ Cf0 for all x ∈ [0, 1]. Especially, f0 satisfies φσ ∗ f0 ≥ f0/3 for

x ∈ Ac
σ. Also in the proof of Lemma B.5 we can find ρ ∈ (0, 1) such that fβ > ρf0. Then, on set

Aσ with sufficiently small σ, we have

φσ ∗ fj ≥ ρφσ ∗ f0 ≥ Kf0,

where K = min{ρ/3, ρC}. Applying (A.1), the first integral on the r.h.s. of (B.5) can be bounded

by

∫

Aσ

(f0 − φσ ∗ fj)2
φσ ∗ fj

≤
∫

Aσ

[f0(x)− f0(x)(1 +O(D(x)σβ))]2

Kf0(x)

-

∫

Aσ

f0(x)O(D2(x)σ2β) = O(σ2β).

To bound the second integral of r.h.s in (B.5), according to Remark 3 in Ghosal et al. (1999) we

get φσ ∗ fj ≥ ρf0/3, then we can find a constant C < 1 such that φσ ∗ fj ≥ Cf0. The second and

third term in (B.5) can be bounded by O(σ2β) based on Lemma B.4.

Lemma B.7. Let Ha
1 denote the unit ball of RKHS of the Gaussian process with rescaled parameter

a and B1 be the unit ball of C[0, 1]. For r > 1, there exists a constant K, such that for ǫ < 1/2,

logN(ǫ,∪a∈[0,r]H
a
1, ‖·‖∞) ≤ Kr

(
log

1

ǫ

)2

. (B.6)

Proof. Since we can write any element of Ha
1 as a function of Re(z) by Lemma 4.5 in van der Vaart and van Zanten

(2009), and an ǫ-net denoted by Fa over Ha
1 is constructed through a finite set of piece-wise poly-

nomial functions, and according to Lemma 4.4 and Lemma 4.5 in Bhattacharya et al. (2014), Fa

also forms an ǫ-net over H
b
1 as long as a is sufficiently close to b. Thus we can find one set
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Γ = {ai, i = 1, . . . , k} with k = ⌊r⌋+ 1 and ak = r, such that for any b ∈ [0, r] there exists some ai

satisfying |b− ai| ≤ 1, so that ∪i≤kFai forms an ǫ-net over ∪a≤rH
a
1. Since the covering number of

∪i≤kFai is bounded by summation of covering number of Fai , we obtain

logN
(
ǫ,∪a∈[0,r]H

a
1, ‖ · ‖∞

)
≤ log

( k∑

i=1

#(Fai)

)
≤ log(k ·#(Fr)) ≤ Kr

(
log

1

ǫ

)2

.

Here we write #(A) to denote the cardinality of any arbitrary set A. To prove the second inequality

above, note that the piece-wise polynomials are constructed on the partition over [0, 1], denoted by

∪i≤mBi, where Bi’s are disjoint interval with length R that can be considered as a non-increasing

function of a, so the total number of polynomials is non-decreasing in a. Also we find that when

building the mesh grid of the coefficients of polynomials in each Bi, both the approximation error

and tail estimate are invariant to interval length R, therefore we have #(Fa) ≤ #(Fb) if a ≤ b, for

a, b ∈ [0, r].

Remark B.3. With larger a we need a finer partition on [0, 1] while the grid of coefficients of

piece-wise polynomial remains the same except the range and the meshwidth will change together

along with a. Since we can see the element h of RKHS ball as a function of it and with Cauchy

formula we can bound the derivatives of h by C/Rn, where |h|2 ≤ C2.
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