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Abstract

Transformation-based methods have been an attractive approach in non-parametric infer-
ence for problems such as unconditional and conditional density estimation due to their unique
hierarchical structure that models the data as flexible transformation of a set of common latent
variables. More recently, transformation-based models have been used in variational infer-
ence (VI) to construct flexible implicit families of variational distributions. However, their use
in both non-parametric inference and variational inference lacks theoretical justification. We
provide theoretical justification for the use of non-linear latent variable models (NL-LVMs) in
non-parametric inference by showing that the support of the transformation induced prior in the
space of densities is sufficiently large in the L; sense. We also show that, when a Gaussian process
(GP) prior is placed on the transformation function, the posterior concentrates at the optimal

rate up to a logarithmic factor. Adopting the flexibility demonstrated in the non-parametric
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setting, we use the NL-LVM to construct an implicit family of variational distributions, deemed
GP-IVI. We delineate sufficient conditions under which GP-IVI achieves optimal risk bounds
and approximates the true posterior in the sense of the Kullback-Leibler divergence. To the
best of our knowledge, this is the first work on providing theoretical guarantees for implicit

variational inference.

1 Introduction

Transformation-based models are a powerful class of latent variable models, which rely on a hier-

archical generative structure for the data. In their simplest form, these models have the following

structure

yi = ww)+e, e~N(007),

z g, (1.1)
for i =1,...,n, where y; € R is a real-valued observed variable, y is the ‘transformation’ function,

x; is a latent (unobserved) variable underlying y;, ¢ is a known density of the latent data (e.g.,
uniform or standard normal), and we include a Gaussian measurement error with variance o?.
For simplicity in exposition, we consider a very simple case to start but one can certain include
multivariate x; and y; and other elaborations.

Model (1.1) and its elaborations include many popular methods in the literature. If we choose
a Gaussian process (GP) prior for the function p, then we obtain a type of GP Latent Variable
Model (GP-LVM) (Lawrence, 2004, 2005; Lawrence and Moore, 2007). We can also obtain kernel
mixtures as a special case; for example, by choosing a discrete distribution for g. The extremely
popular Variational Auto-Encoder (VAE) is based on choosing a deep neural network for u, and
then obtaining a particular variational approximation relying on a separate encoder and decoder
neural network (Kingma and Welling, 2013). Refer also to the non-linear latent variable model
(NL-LVM) framework of (Kundu and Dunson, 2014) for a nonparametric Bayesian perspective on
models related to (1.1).

However, a key question is what are the theoretical properties of ‘transformation’ based models

of the form in (1.1). For example, can this framework be theoretically used to approximate any



density with an arbitrarily high degree of accuracy? Does the accuracy improve with sample size
as the optimal rate for density estimation or conditional density estimation (given fixed covariates)
problems?

These types of questions have been answered elegantly for many nonparametric Bayes and fre-
quentist density estimation methods. For example, Dirichlet process mixture models (DPMMs)
have been very widely applied (Escobar and West, 1995; Ferguson, 1973, 1974; MacEachern, 1999;
Miiller et al., 1996) and studied in terms of their optimality properties asymptotically (Ghosal et al.,
1999, 2000a; Ghosal and van der Vaart, 2007; Kruijer et al., 2010).

When using a continuous distribution g, model (1.1) leads to a specific class of continuous
transformation-based model as the NL-LVM models. Here a GP prior is a natural choice for
the unknown transformation (Dasgupta et al., 2017; Kundu and Dunson, 2014; Lenk, 1988, 1991;
Tokdar, 2007; Tokdar et al., 2010), however this approach has two main setbacks. The primary
tools used to develop these theoretical results in the context of DPMMs, approximating an arbitrary
smooth density using a convolution against a discrete mixing measure, cannot be extended to NL-
LVMs in a straightforward manner. The alternative approach using Markov chain Monte Carlo
methods comes with theoretical guarantees, but suffers from computational instability owing to
lack of conjugacy. This instability propagates through the posterior distribution of the unknown
transformation requiring expert parameter tuning and vigilance for guaranteed performance. To
mitigate some of these issues associated with a full-blown MCMC, approximate Bayesian methods
including the variational inference are proposed (Titsias and Lawrence, 2010).

Development of flexible variational families using the reparametrization trick (Figurnov et al.,
2018; Jankowiak and Obermeyer, 2018; Kingma et al., 2015; Kingma and Welling, 2013) have emerged
as a powerful idea over the last decade and continues to flourish, often in parallel with latest de-
velopments in generative deep-learning methods. While the overarching goal of this trick is to find
unbiased estimates of the gradient of the objective function (evidence lower bound in variational
inference), one cannot but notice its connection with non-linear latent variable methods. A sim-
ilar idea is explored as Implicit variational inference (Huszar, 2017; Shi et al., 2017) to construct
an implicit distribution, a distribution that cannot be analytically specified but can be sampled
from. Such a construction brings in certain computational challenges stemming from density ra-

tio estimation. More recently, implicit VI was extended to semi-implicit VI (Molchanov et al.,



2019; Titsias and Ruiz, 2019; Yin and Zhou, 2018) which avoids density ratio estimation by using
a semi-implicit variational distribution g4(6) = [ ¢{6 | g4(u)}q(u)du where the density ¢{z | g4(u)}
corresponds to a transformation-based model with transformation g, — typically taken to be a neu-
ral network with parameters ¢. Although VI approaches have shown significant improvements in
computational speed their theoretical properties are largely a mystery.

By developing a framework to answer the two previous theoretical questions for NL-LVM with a

continuous transform, we are able to find a novel approach to implicit variational inference based on
the NL-LVM, for which we can provide strong theoretical guarantees. Building off of the framework
from Kundu and Dunson (2014), we provide a rate-adaptive result for a class of NL-LVM models
for density estimation by assigning a rescaled GP prior on the transformation function, and in
the process significantly advance the technical understanding of NL-LVM. We provide conditions
for the mixing measure to admit a density with respect to Lebesgue measure and show that the
prior support of the NL-LVM is at least as large as that of DPMMs. We use the same class
of NL-LVM models to construct a flexible implicit variational family, deemed GP-IVI. We show
that Kullback-Leibler (KL) divergence between the GP-IVI and the true posterior is stochastically
bounded, which is the best possible attainable bound. Additionally, we show that GP-IVI achieves
the optimal variational risk bound. To the best knowledge of the authors, these are the first
theoretical results in the context of implicit variational inference methods.
A summary of our contributions. Our results are the first to provide a concrete theoretical frame-
work for transformation-based models widely used in Bayesian inference and machine learning.
By establishing a connection between NL-LVM with implicit family of distributions, we provide
statistical guarantees for implicit variational inference. Motivated by our findings, transformation-
based models have the potential to provide machine learning with a rich class of implicit variational
inference methods that come with strong theoretical guarantees.

We close the section by defining some notations in §1.1 used throughout the paper. In §2 we
present an overview of the NL-LVM model as well as several properties of the model. In section §3
we discuss our two main results for non-parameteric inference using NL-LVM. In §4 we introduce
GP-IVI. We then show that that the KL divergence between the variational posterior and the true
posterior is stochastically bounded and argue why this is optimal from a statistical perspective.

Inspired by Yang et al. (2020), we additionally present parameter risk bounds of a version of implicit



variational inference, which we term as a-GP-IVI which is obtained by raising the likelihood to a

fractional power « € (0, 1).

1.1 Notation

We denote the Lesbesgue measure on RP by A. The supremum norm and L;-norm are denoted
by |||l and |[|-||;, respectively. For two density functions p,q € F, let h denote the Hellinger
distance defined as h%(p,q) = [ (p'/? — ¢*/?)2dX. Denote the Kullbeck-Leibler divergence between
two probability densities p and ¢ with respect to the Lebesgue measure by D(pl||g) = [ plog(p/q)dA.
We define the additional discrepancy measure V (p||q) = [ plog®(p/q)d)\, which will be referred to
as the V-divergence. For a set A we use I4 to denote its indicator function. We denote the
density of the normal distribution N (t;0,0%14) by ¢, (t). We denote the convolution of f and g by
[*9(y) = [ f(y —z)g(x)dx. Absolute continuity of ¢ with respect to p will be denoted ¢ < p. We
denote the set of all probability densities f < A by F. The support of a density f is denoted by
supp(f). For a set X, let C(X) and CP(X), B > 0 denote the spaces of continuous functions and
B-Holder space, respectively. We write ” =" for inequality up to a constant multiple. For any a > 0

denote |a| the largest integer that is no greater than a.

2 A specific transformation-based model

In this section, we focus on an NL-LVM model (Kundu and Dunson, 2014) in which the response
variables are modeled as unknown functions (referred to as the transfer function) of uniformly
distributed latent variables with an additive Gaussian error. This is clearly a specific instance of a
transformation-based method; since the inverse c.d.f. transform of uniform random variables can
generate draws from any distribution, a prior with large support on the space of transfer functions
can approximate draws from any continuous distribution function arbitrarily closely. One can also
conveniently approximate a parametric family with the non-parametric model by centering the
prior on the transfer function on a parametric class of inverse c.d.f. functions. We start from the
model formulation and then present a general approximation result of NL-LVM model to the true

density under mild regularity conditions.



2.1 The NL-LVM model

Suppose we have 11D observations Y; € R for i = 1,...,n with density fy € F, the set of all densities
on R absolutely continuous with respect to the Lebesgue measure A. We consider a non-linear latent

variable model

E:M(Tll)—i_ew eiNN(07O-2)7i:17”’7n

p~ Iy, o~ ne U(o, 1), (2.1)

where 7;’s are latent variables, u € C[0, 1] is a transfer function relating the latent variables to the
observed variables and ¢; is an idiosyncratic error. Marginalizing out the latent variable, we obtain

the density of y conditional on the transfer function p and scale o

1
F@0) % Fuoly) = /O b0y — pla))de. (2.2)

It is not immediately clear whether the class of densities {f,,} encompasses a large subset of
the density space. The following intuition relates the above class with continuous convolutions
which plays a key role in our proofs. Within the support of a continuous density fy, its cumulative
distribution function Fy is strictly monotone and hence has an inverse F{,” ! satisfying Fo{Fy L)} =
t for all ¢ € supp(fo). Now letting po(x) = Fo_l(:E), one obtains f,, +(y) = ¢ * fo, the convolution
of fo with a normal density having mean 0 and standard deviation o. This provides a way to
approximate fo by the NL-LVM, as an important property to bounding the KL-divergence. We

summarize the approximation result in the next section.

Let A denote the Lebesgue measure on [0, 1] and denote the Borel sigma-field of R by B. For
any measurable function p : [0,1] — R, let v, denote the induced measure on (R, B), then, for
any Borel measurable set B, v,(B) = A(p~Y(B)). By the change of variable theorem for induced

measures,
/ 6oy — p(a))dz = / b0y — £)du(8), (2.3)
0

so that f, , in (2.2) can be expressed as a kernel mixture form with mixing distribution v,,. It turns

out that this mechanism of creating random distributions is very general. Depending on the choice



of 1, one can create a large variety of mixing distributions based on this specification. For example,
if 41 is a strictly monotone function, then v, is absolutely continuous with respect to the Lebesgue

measure, while choosing © to be a step function, one obtains a discrete mixing distribution.

2.2 Assumptions on true data density f;

It is widely recognized that one needs certain smoothness assumptions and tail conditions on the

true density fy to derive posterior convergence rates. We make the following assumptions:
Assumption F1 We assume log fo € CP[0,1]. Let l;(x) = & /da’{log fo(z)} be the jth

derivative for j = 1,...,r with » = |3]. For any 8 > 0, we assume that there exists a constant

L > 0 such that

‘lr(x) - lr(y)’ < L‘x - y‘ﬁ—r7 (2’4)

for all x # y.

The smoothness assumption in the log scale will be used to obtain an optimal approximation
error of the GP-transformation-based model to the true fy, providing a key piece in managing
the KL-divergence between the true and the model for posterior inference. Similar assumption
on the local smoothness appeared in Kruijer et al. (2010), while in our case a global smoothness
assumption is sufficient since fj is assumed to be compactly supported.

Assumption F2 We assume fj is compactly supported on [0, 1], and that there exists some
interval [a,b] C [0,1] such that fy is non-decreasing on [0, a], bounded away from 0 on [a,b] and
non-increasing on [b, 1].

Assumption F2 guarantees that for every § > 0, there exists a constant C' > 0 such that
fo*x ¢s > Cfy for every o < 6. Also see Ghosal et al. (1999) for similar assumption in density

estimation.

2.3 Approximation property

As mentioned above, the flexibility of f, , comes from a large class of the induced density measure
v,,. Now we discuss the approximation of f,, ; to the true fo where we utilize its equivalent form of a

convolution with a Gaussian kernel. It is well known that the convolution ¢, * fo can approximate f



arbitrary closely as the bandwidth ¢ — 0. For Holder-smooth functions, the order of approximation
can be characterized in terms of the smoothness. If fy € C?[0,1] with 8 < 2, the standard Taylor
series expansion guarantees that ||¢, * fo — folleo = O(c®). However, for 8 > 2, it requires higher
order kernels for the convolution to remain the optimal error (Devroye, 1992; Wand and Jones,

1994). Kruijer et al. (2010) proposed an iterative procedure to construct a sequence of function

{fi}izo by
fiv1=fo—Dofjy Dofj=ds*fj—f;, 72>0. (2.5)

We define fg = f; with integer j such that 8 € (2j,2542]. Under such construction, for fy € CP[0,1]
the convolution ¢, * f5 preserves the optimal error O(c”) (Lemma 1 in Kruijer et al. (2010)). We

state a similar result in the following.

Proposition 2.1. For fy € C?[0,1] with 8 € (24,27 + 2] satisfying Assumptions F1 and F2, for

fa defined as from the iterative procedure (2.5) we have

|66 * f5 — follee = O(c?),

and
o * f5(x) = fo(x)(1 + D(z)0(c")), (2.6)
where
a ]
D(@) = eilli(@)]7 + i,
i=1
for non-negative constants ¢;,i =1,...,r+ 1, and for any z € [0,1].

The proof can be found in the supplementary file section A.2. The ability to represent the
model in terms proportional to true density plays an important role in bounding the KL-divergence

between f, o, and fo.

Remark 2.1. The approzimation result can be extended to the isotropic 3-Hélder space CP[0,1]%



under similar reqularity assumptions. The extended approximation result can be applied to more

general cases.

3 Posterior inference for NL-LVM

Most of the existing literature on non-parametric Bayesian approaches to the density estima-
tion problem are centered around DP mixture priors (Ferguson, 1973, 1974), which are simply
transformation-based models with a discrete distribution for the latent variables. On the other
hand, the theoretical properties of continuous transformation-based models remain largely un-
known.

In this section, we provide theoretical results for posterior inference of the transformation-based
model for unconditioned density estimation in the context of NL-LVM. Our results are two-fold:
(1) We first show that a large class of transfer function u leads to Ly large support of the space of
densities induced by the NL-LVM; (2) We obtain the optimal frequentist rate up to a logarithmic
factor under standard regularity conditions on the true density using the transformation-based

approach with induced GP priors.

3.1 L, large support

One can induce a prior II on F via the mapping f,, by placing independent priors II, and II,
on C[0,1] and [0,00) respectively, as II = (II, ® II,) o f;clr Kundu and Dunson (2014) assumes
a Gaussian process prior with squared exponential covariance kernel on p and an inverse-gamma
prior on o2. Given the flexibility of fu,c upon the choices of i, placing a prior on p supported on
the space of continuous functions C[0, 1] without further restrictions is convenient and Theorem
3.1 assures us that this specification leads to large L1 support on the space of densities.

Suppose the prior II,, on x has full sup-norm support on C[0, 1] so that IT,(|[x — p*||cc <€) >0
for any € > 0 and p* € C[0,1], and the prior II, on ¢ has full support on [0,00). If fy is
compactly supported, so that the quantile function pg € C[0,1], then it can be shown that under
mild conditions, the induced prior II assigns positive mass to arbitrarily small L1 neighborhoods of
any density fy. We summarize the above discussion in the following theorem, with a proof provided

in the section A.3 of supplementary file.



Theorem 3.1. IfII, has full sup-norm support on C[0,1] and I, has full support on [0,00), then
the L1 support of the induced prior I1 on F contains all densities fy which have a finite first moment

and are non-zero almost everywhere on their support.

Remark 3.1. The conditions of Theorem 3.1 are satisfied for a wide range of Gaussian process

priors on u (for example, a GP with a squared exponential or Matérn covariance kernel).

Remark 3.2. When fy has full support on R, the quantile function ug is unbounded near 0 and 1,
so that || oo = 00. However, fol \o(t)| dt = [g || fo(z)dx, which implies that o can be identified
as an element of L1]0,1] if fo has finite first moment. Since C|0,1] is dense in L1[0,1], the previous

conclusion regarding Ly support can be shown to hold in the non-compact case too.

3.2 Posterior contraction results

Gaussian process priors have been widely used in non-parametric Bayesian inference as well as ma-
chine learning due to their modeling advantages and proper theoretical grounding (van der Vaart and van Zanten,
2007, 2008, 2009). Considering a Gaussian process as the transformation mapping over the latent
variable, the transformation-based model essentially aligns with a Gaussian process latent variable
model (GP-LVM) (Ferris et al., 2007; Lawrence, 2004, 2005; Lawrence and Moore, 2007). Theoret-
ical work of GP-LVM such as Kundu and Dunson (2014) showed a KL large support of the induced
prior process, and also showed the posterior consistency to the true density function. However a
straightforward description of the space of densities induced by the proposed model is not clear
and the posterior contraction rate of the proposed model for finite data is still unknown.

We now present the posterior contraction result for transformation-based model with NL-LVM.
To that end, we first review its definition. Given independent and identically distributed observa-
tions Y(") = (Y1,...,Y,) from a true density fy, a posterior II,, associated with a prior IT on F is

said to contract at a rate e€,, if for a distance metric d, on F,
E T {dn(f, fo) > Me, | Y} =0 (3.1)

for a suitably large integer M > 0. Unlike the treatment in discrete mixture models (Ghosal and van der Vaart,

2007) where a compactly supported density is approximated with a discrete mixture of normals,

10



the main idea is to first approximate the true density fy by a proper convolution with fz defined as
in (2.5), then allow the GP prior on the transfer function to appropriately concentrate around pug,
the inverse c.d.f. function of the defined fg. We first state our choices for the prior distributions
IT, and II,.

Assumption P1 We assume g follows a centered and rescaled Gaussian process denoted by
GP(0,c¢?), where A denotes the rescaled parameter, and assume A has density g satisfying for

a> 0,
ChaP exp (—Dyalog?a) < g(a) < Cayd? exp (—Dsalog? a).

Assumption P2 We assume o ~ IG(a,,b,). Note that contrary to the usual conjugate choice of
an inverse-gamma, prior for o2, we have assumed an inverse-gamma, prior for o. This enables one to
have slightly more prior mass near zero compared to an inverse-gamma prior for o2, leading to the
optimal rate of posterior convergence. Refer also to Kruijer et al. (2010) for a similar prior choice

for the bandwidth of the kernel in discrete location-scale mixture priors for densities.

Theorem 3.2. If fy satisfies Assumptions F1 and F2 and the priors 11, and 11, are as in Assump-
tions P1 and P2 respectively, the best obtainable rate of posterior convergence relative to Hellinger

metric h s
B .
en =n 25+ (logn)", (3.2)

where t = 3(2V q)/(28 +1) + 1.

We provide a sketch of the proof below, the full proof is deferred to the supplementary file section
A.4. Tt suffices to check sufficient conditions (prior thickness, sieve construction, entropy condition)
for posterior contraction result in Ghosal et al. (2000a). We first verify the prior thickness. From

Lemma 8 of Ghosal and van der Vaart (2007), one has

/ folog (%) Shz(fo,fw)<1+log‘ fo
1,0

fuo

7
) )
[e'S)

11



for i = 1,2. By Lemma B.2, we have log | fo/fucllc < |t — p15]loc/0?, and by Lemma B.1 and

Lemma B.6, we bound h%(fo, fu.o) 3 |t — pslleo /0% + O(0?8). Then we have

{0 € lon. 200l — pglloe 3 05} C{D(follfue) 3 022,V (foll fuo) 5 02P}.

Under assumptions P1 and P2 the prior thickness is guarantee by upper bounding H{a € [on, 200], ||p—

palloo 2 Jﬁ“}. We construct the sieve

fn:{fp,cr:,ueBn,ln<O'<hn}.

where B,, denotes the sieve for a GP prior on u as defined in van der Vaart and van Zanten (2009).

Further we calculate the entropy N (€., Fp,|-||;) by observing that for oo > o1 > 02/2,

+
™

2 Y2l — polloo | 3(02 — 01)
g1 g1 '

Hflh,al - fﬂ2702”1 < (
The entropy bound is obtained applying Lemma B.7. Finally, the sieve compliment condition is
easily verified by combining the results on GP priors in van der Vaart and van Zanten (2009) and

tail properties of inverse-gamma distribution of o.

4 Gaussian Process Implicit Variational Inference

Motivated by the flexibility we have demonstrated for transformation-based models in the non-
parametric setting, we construct a flexible implicit variational family of distributions, deemed
Gaussian process implicit variational inference (GP-IVI). We provide sufficient conditions under
which GP-IVI achieves optimal risk bounds and approximates the true posterior in the sense of
the Kullback—Leibler divergence. We begin by defining common terminology used throughout the
section and defining GP-IVI.

4.1 Preliminaries

We consider IID observations Y; € RP, for ¢ = 1,...,n. Let P(,(") be the distribution of the
observations with parameter § € © C R? that admits a density pé") relative to the Lebesgue

measure. Let Py denote the prior distribution of # that admits a density py over ©. With a

12



slight abuse of notation, we will use p(Y' "™ | ) to denote Pg") and its density function. We adopt a

frequentist framework and assume a true data generating distribution IP’(SCL) and a true parameter 6*.

Denote the negative log prior U(f) = — log pp(f) and the log-likelihood ratio of Y;, fori = 1,...,n,
by

€5(0,0") = log[p(Y; | 6)/p(Yi | 67)]. (4.1)
We denote the first two moments of the log-likelihood by
D(0710) = —ESV[62(0,07)], pa(07]10) = E§2[61(6,0%)?). (4.2)
Lastly denote the appropriate neighborhood around the true parameter 6%,
Ba(6%,¢) = {0 | Dp(Y™ | ) [p(Y ™ | 0)] < ne® VIp(Y ™ | 67)[p(Y ™ | 0)] < ne?}. (4.3)

4.2 Gaussian Process Implicit Variational Inference

Using the NL-LVM model, we can define the variational family of 6 conditioned on the latent

variable 7, with parameters p € C[0, 1] and o € (0, 0),

Qo (03 | mi) = ¢ (0; — (1))

n ~U(0,1),i=1,...,d.
Marginalizing over the latent n gives us the implict variational distribution,

Qo (0) = /0 G0 — ()i,

Together this defines the Gaussian process implict variational inference (GP-IVI) family,

1
Qar = {4ual0) = [ 6,00~ uti)in | € Clo. 1) 0> 0},

13



4.3 Approximation Quality of GP-IVI

In this section, we show that KL divergence between the true posterior and its optimal GP-IVI
approximation is O,(1). Using a simple example, we show that without further assumptions this
bound cannot be improved. We begin the section with said example.

Consider the following one-dimensional Gaussian-Gaussian Bayesian model for inference of an

unknown true mean 6* using the model
Yly--anNN(evoj)v 0NN(M070-(2])

in which jg, 09,0 are all known. Let Y, fi,, 02 denote the sample mean, the posterior mean, and

variance, respectively. Straight forward calculations show
D [N(H*,n_laz)HN(un,afL)] — X%, weakly.

Even in the simple case of a normal-normal model, we see that the KL divergence between the
true data generating distribution and the true posterior does not converge weakly to 0 but instead
converges weakly to a stochastically bounded random variable.

The Op,(1) bound is achieved over a rather small subfamily of GP-IVI. Define the restricted

Gaussian family
r, = {N(/L,T2Id) [plle <M, 0< 0, <7< cé/2an},

and let py denote the quantile function corresponding to f € I',. We define the corresponding

small bandwidth convolution Gaussian (variational) family
1
Q= {01ol0) [0 (6) = [ 600~ pstan. FE T

The following assumptions are required to show the O,(1) bound for the KL-divergence.

Assumption B1 The true parameter 6* satisfies ||0*[|o < M.

14



Assumption B2 The variance bound o, satisfies 0 < o,, < n-1/2 < c(l)/ 2crn, for all n > 1.
Assumption B3 The quantities D(6*||0) and p2(0*||6) are finite for all § € R

Assumption B4 The matrices of the second derivatives, D®) (6*||6), ,ugz) (6*]10), UP)(0) exist

on R? and satisfy for any 6,6" € R?,

Sz (DP)(6°1/6) = DD (6°167)) < Cll6 - 675",
Smas (1157 (6°]16) — a5 (6°]167) ) < Cl6 — 6715,

e (U(8) = UP(6M)) < CJl6 - 6752,

for some aq, ao, a3 > 0. Here s;,4; denotes the maximum eigenvalue of the matrix.

Assumption B5 D(0*(|0) > C||6 — 0%||2.
Assumption B1 is needed so that a normal distribution centered at the true parameter is con-
tained in I';,. Assumptions B2-B4 are technical assumptions needed in order to achieve convergence

of certain bounds used in the proof. Assumption B5 is a standard identifiability condition.

Theorem 4.1. Under assumptions B1 through BS5 it holds that m}(Q,,) = mingeo, {D]q|lp(- | Y™)]}
18 bounded in probability with respect to the data generating distribution ng). Formally, given any

e > 0, there exists M., N. > 0 such that for n > N, we have ]P’(SCL)(mZ(Qn) > M) <e.

Again, we provide a sketch of the proof below and provide a full proof in section A.5 of the
supplementary file. Under assumptions B1-B2, ¢,(0) = N(0;60% 0% + 02) belongs to Q,. By
definition, m%(Q,) < Dlgallp(- | Y™)]. We show Dig,|[p(- | Y™)] is O,(1) by showing that
it is a sum of Op(1) terms. Letting E, denote the expectation with respect to g, Dlgn|p(- |
Y (™)] can be broken into four parts E,[log g,], log m(Y™), E,[U(6)], and E,, [S1, £:(0,6*)]. The
first term E,[loggy] is a constant, hence Op,(1). Noting g™ [m(Y(™)] = 1, an application of
Markov’s inequality shows that logm (Y (™) is O,(1). Taking a (multivariate) Taylor expansion of

the functions U(0), D(0*||0), and p2(6*]|0) about 0* and applying assumption B4 and B5 gives us

15



the bounds

Co(0® +07) < Ea[D(07|0)] < Cul0® + a7),
En[p2(07(10)] < Ca(0? + 07), (4.4)

E,[U(0)] < C1(c? + 2).

Markov’s inequality shows that U(6) is Op(1). It remains to show E,, [>_1 ; £;(0,0%)] is Op(1). Given
€ > 0, choose § = [Cgco / (EC@)2] vz Applying Chebychev’s and Jensen’s inequalities together with
(4.4) we have,

]P’étf) {Eo

Finally by assumption B2 we have con < ;2. Thus

]P’gf) {Eo

which shows E,, >, £i(0,0%)] is Op(1). Combining the four bounds completes the proof.

n

. * _ n 02 02 En[ﬂ?(e*ne)] CQ
;zz(e,e )] < —Cy(1+0)n(o? + n)} < 52 (B, D@ 8] < Gt

n

Zei(o,o*)] <20, (1 + [Caco/(cCo)2] Y 2) } <e,

=1

4.4 «-Variational Bayes Risk Bound for GP-IVI

In developing risk bounds for parameter estimation, we use a slight variation of the standard
variational objective function for technical simplicity. «-variational Bayes (a-VB) (Yang et al.,
2020) is a variational inference framework that aims to minimize the KL divergence between the

variational density and the a-fractional posterior (Bhattacharya et al., 2019), defined as

_ fB[p(Y(”) | 0)]*pe(0)db
Jolp(Y™) [ 0))epy(6)d6”

P,(0 e B|Y™)
This leads to the following a-VB objective

q(0) = argmin D(q|[pa(- | YV)) = argmin a¥(g), (4.5)
qeQ q
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where

v(a) = [ o010 [ o — 0 i
The variational expected log-likelihood ratio will be hence referred to as the model-fit term and
the remaining KL term will be hence referred to as the regularization term.

The importance of the a-VB framework comes from its ability to upper bound the variational
Bayesian risk, the integral of r(0,0*) = n='D, [pén)Hpgf)] with respect to q(6), by the variational
objective ¥(g). Minimizing the variational objective in turn minimizes the variational risk.

Before proceeding we motivate the form of our optimal risk bound. Consider preforming VI
over the unrestricted class of densities over ©. Minimizing the a-VB risk bound is achieved by

balancing the two terms in terms in ¥(gq). By choosing

-tz

where B, (0%, ¢) is defined in (4.3), the model-fit term can be shown to be of order O,(ne?)
and the regularization term can be shown to be a~!log[Py{B,(0*,¢)} '], a multiple of the local
Bayesian complexity. This is the optimal risk bound for variational inference considering the class
of all distributions as the variational family (Yang et al., 2020). We summarize this in the theorem

below.

Theorem 4.2. Assume q,, satisfies (4.5) and G, o < pg. It holds with P(,(f)-probabilz'ty at least
1—2/[(D —1)*ne?] that,

Da e? + L log {Pg [Bn(H*,a)]_l} +0(n™t).

-« n(l — «)

1
/nDa (0,0)u0 (0)d0 <

We provide a sketch of the proof below. The full proof can be found in section A.6 of the
supplementary file. Following our above motivation, we aim to show that there is a member of the
GP-1VI family Qgp such that the model-fit term is of order O,(ne?) and the regularization term is
proportional to the local Bayesian complexity. We leverage the approximation properties from §3
to construct an approximation that achieve this balance. We construct this variational distribution

as follows.
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Let the prior distribution of 6 is given by the density pp(0) = fo(8) € CP[0,1], B € (27,25 + 2].
Let fg = f; be the density constructed as in (2.5) satisfying ||y * f5 — follco = O(0?). Define the

density function

~ fs(t) B, o+ )

falt) = 2 4.6
5(t) Ty 0oy ol (4.6)

and its corresponding variational density
a7, ,(0) = / bo (0 —t) fa(t)dt. (4.7)

The model-fit term is bounded in high probability using a straight forward application of Cheby-
chev’s inequality. Using (A.1), we bound the regularization term proportional to the local Bayesian
complexity. Combining these and using Theorem 3.2 of Yang et al. (2020) finishes the proof.

Assumption A1 Prior density pg satisfies log[Py{Bn(0%,¢)} '] < —ne?.

Remark 4.1. Let {py,0 € O} be a parametric family of densities. Assume for 0,601,062, there exists
o > 0 such that D(O*]|0) 3 167 — 022, ua(67[16) 3 116 — 012, and 10y — 6al® 5 h(Br,02) 3
|01 — 02]|“. Then if the prior measure possesses a density that is uniformly bounded away from zero

and infinity on ©, then Assumption A1 is satisfied. Assumptions of this form are common in the

literature; refer to pg 517 (Ghosal et al., 2000b).

Corollary 4.1. Suppose the prior density py satisfies Assumption A1 and q satisfies (4.5). It holds

with probability tending to one as n — oo that,

1/2
{/h2[p(- | Ollp(- | 9*)]@,0(9)&9} <o(m™),

demonstrating that the risk bound is parametric even when a flexible class of variational approxi-

mation s used.

5 Conclusion

To summarize, we have provided theoretical properties of transformation-based model in non-
parametric and variational inferences in the context of NL-LVM. We characterized the space of

densities induced by NL-LVM as kernel convolutions with a general class of continuous mixing
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measures and showed L; prior support of the transformation-based model. Placing a GP prior on
the transformation function, we obtain the optimal rate of posterior contraction up to a logarithmic
factor. Adopting the flexibility of GP-LVM we constructed GP-IVI. We have shown that GP-IVI
achieves both optimal a-VI risk bounds and optimal approximation to the true posterior. In doing
so, we have provided theoretical guarantees for a novel transformation-based implicit variational

inference.

A Proofs of results in the main document

A.1 Conventions

Equations in the main document are cited as (1), (2) etc., retaining their numbers, while new
equations defined in this document are numbered (S1), (S2) etc. In this section we collect the proof

of Proposition 2.1, Theorems 3.1, 3.2, 4.1 and 4.2.

A.2 Proof of Proposition 2.1

In this section we prove the results in Proposition 2.1.

Proposition 2.1 For fy € C?[0,1] with 8 € (27,2j + 2] satisfying Assumptions F1 and F2, for

f3 defined as from the iterative procedure (2.5) we have

6o * f5 — folls = O(a”),

and
o * [5(x) = fo(x)(1 + D(x)O (o)), (A1)
where
D) = Y el @)l + e,
i=1
for non-negative constants ¢;,i = 1,...,r + 1, and for any = € [0, 1].
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Proof. We now show equation (A.1). Following the proof of Lemma 1 in Kruijer et al. (2010),

for any z,y € [0, 1],

"L _
8 fuly) < log fole) + 30 Py — a1+ Ly — ol
i=1 )

L

tog foly) 2 Iog foi) + Y- Ly )7 — Ly — ol
i=1 ’

Define

Then we have

u 1
P < 1t B (B MBI

y 1
e“lor > 1+ B} + E(Bj”om)2 +o— M|BY L TH

where

Z M(y — )

i
=1

exp sup
(T + 1)' { z,y€[0,1],x7#y <

Note that fj is bounded on [0, 1], we consider the convolution on the whole real line by extending

fo analytically outside [0,1]. For g € (1,2],r =1 and z € (0,1),

6o * fol@) < folx) / Blor @0 (y — 2)dy

Sfo(x)/R(ba(y—x)[l+L|y—$|5+M{Zf($)(y—x)2+2Lll(x)(y—ﬂf)|y—xlﬁ+L2|y—$l2ﬁ}]dy- (A.2)

Since [j(z)’s are all continuous on [0, 1], there exist finite constants M; such that |I;| < M; and

|y — x| < 1. The integral in the last inequality in (A.2) can be bounded by

/R boly — )1+ Lly — 2’ + M1y (2)(y — 2)|° + (L2 + 20|y — 2| Ydy
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Therefore,

o * folx) < fola){L + (r1|l(2)]” + r2)0”},

where r; = MME_BNE, re = L(1+ ML +2MM)py, and pf = E{ly — x|}

In the other direction,
$o * fo(x) = fo(x) / $o(y — 2)[{1 — Ly — 27 = M{I}(2)(y — 2)* = 2LL(2)(y — 2)|y — =|” + L?|y — «[*"}]dy.

Thus we achieve expression of ¢, * fg in Proposition 2.1.
For any § > 2 and the integer j such that § € (24,25 + 2]. We define #@ « f as the i-folded
convolution of ¢ with f for any integer ¢ > 1. First we calculate ¢, * fo(x), <;5£,2) x folx), ...,
. fo(z), and by Lemma B.3 we get ¢, * f;j(z). The calculation of o fo(x) is the same as
that of ¢, * fo(x) except taking the convolution with ¢ Vio The terms o2, o, ..., 0% caused
by the factors containing |y — z|¥ for k < § in gb((,i) x fo can be canceled out by Lemma B.3. For
terms containing |y — z|* for k > 3, we take out |y — z|® and bound the rest by a certain power

of |l;(z)| or some constant. Following an induction in Kruijer et al. (2010), we can guarantee the

approximation error of ¢, * f3 is at the order of O(a?). O

A.3 Proof of Theorem 3.1

Theorem 3.1. If II, has full sup-norm support on C[0,1] and II, has full support on [0, c0),
then the L; support of the induced prior II on F contains all densities fo which have a finite first

moment and are non-zero almost everywhere on their support.

Proof. Let fo be a density with quantile function g that satisfies the conditions of Theorem 3.1.
Observe that ||ugll; = ftlzo luo(t)|dt = [%_|z| fo(z)dz < oo since fo has a finite first moment,
and thus po € L1]0,1]. Fix € > 0. We want to show that II{B.(fo)} > 0, where B.(fo) =
1= folly < e

Note that po ¢ C[0,1], so that P(||x — pol|, < €) can be zero for small enough e. The main idea
is to find a continuous function iy close to g in L; norm and exploit the fact that the prior on

places positive mass to arbitrary sup-norm neighborhoods of jig. The details are provided below.
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Since ||¢po * fo — foll; = 0 as 0 — 0, find o7 such that |¢, * fo — foll; < €/2 for 0 < 0. Pick

any o < o1. Since C[0,1] is dense in L;]0, 1], for any § > 0, we can find a continuous function fig

such that ||zo — fiol|; < . Now, - fﬁo,fful < Cl|p — piol|; /o for a global constant C'. Thus,

for 6 = eop/4,
{f,u,cr 1 o9 <o <oy, ||1u_ﬂ0||oo < 5} C {fu,o : Hf(] - fu,o”l < 6}7

since || fo — fu,o\ll < |lfo— fuo,crHl + Hfuo,cr - fﬁo,aul + HfﬁoJ - f%"Hl and fuy,0 = ¢o * fo. Thus,
I{Bc(fo)} > Iu(||p — foll o < 9)y(00 < 0 < 1) > 0, since 1T, has full sup-norm support and

I1, has full support on [0, c0). O

A.4 Proof of Theorem 3.2

In this section we will give a detailed proof for the adaptive posterior contraction rate result for

the NL-LVM models.

Theorem 3.2. If f; satisfies Assumptions F1 and F2 and the priors II, and II, are as in
Assumptions P1 and P2 respectively, the best obtainable rate of posterior convergence relative to

Hellinger metric h is
B
en =n 2+ (logn)’, (A.3)

where t = 3(2V q)/(26+ 1) + 1.

Proof. Following Ghosal et al. (2000a), to obtain the posterior convergence rate we need to find
sequences €,,¢, — 0 with nmin{e2,€2} — oo such that there exist constants Cy,Cy,C3,Cy > 0

and sets F,, C F so that,

log N(&,, Fp,d) < Ciné2, (A.4)

T(F;) < Cyexp{—ney(Cy +4)}, (A.5)

<fu, /fo log— <e /fo1 0g <fu > < Ei) > Cyexp{—Cone2}. (A.6)
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Then we can conclude that for e, = max{é,,€,} and sufficiently large M > 0, the posterior

probability
(flh (fu,o,fo) >M€n|Yi,...,Yn) —>0a.S.PfO,

where Py, denotes the true probability measure whose the Radon-Nikodym density is fo. To
proceed, we consider the Gaussian process j ~ W4 given A, with A satisfying Assumption P1.

We will first verify (A.6) along the lines of Ghosal and van der Vaart (2007). Recall f3 is defined
as from (2.5), by Lemma B.5 we guarantee that fg is a well-defined density. Denote by pug = F) 5 L

the quantile function of fg, then we have f,,, » = ¢ * f3. Note that

W2 (fo, fuo) 312 (fos Fugir) + B2 (fusos Fuo)- (A7)

Under Assumptions F1 and F2 and by Lemma B.6, one obtains

h?(fo, fugo) < /folog (ffo > 30(a*). (A8)
8:0

From Lemma B.1 and the following remark, we obtain

[
h2(fug,oafu,o) ;5 0_725 (AQ)

From Lemma 8 of Ghosal and van der Vaart (2007), one has

/fo log <ff0 > < hz(fo,fu,g)<1 + log
1,0

fo
Jiolloo

) (A.10)

fori=1,2.
From (A.7)-(A.10), for any b > 1 and &2 = o2°,

{0 € 0w, 200, I — sl B“}c{/folog—w /flog<fw> o2},
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Since pg € CP10,1], from Section 5.1 of van der Vaart and van Zanten (2009),

e 1 2Vq
(I — pslloe < 26,) > Ca eXP{ — C5(1/6,,) 7 log (5—> }(06/5n)(p+1)/(6+1)7

n

for 4, — 0 and constants Cy, C5, Cg > 0. Letting J,, = O'ﬁ-H, we obtain

1 1 2Vq
(- psll. < 26,) > exp{ - 07(0—n) log (F) }

for some constant C7 > 0. Since o ~ IG(a,,b,), we have

(o 20n
U, (0 € [on,20,]) = FIZZ ) / g~ (@) e=bo /2 gy

> Vo /2% e~ ol g
- F(GU) [

Ao

> F(Zo)an exp{—b,/on}

> exp{—Cg/on},

for some constant Cg > 0. Hence

1 1\
110 € fon. 20, = mall St} 2 exp { = Cr( 10w (—p ) fenw{-Ci/on)
n On

1 1 \?v
n On

Then (A.6) will be satisfied with &, = n~8/(25+D1og" (n), where t; = 8(2V ¢)/(28 + 1) and some

C9 > 0. Next we construct a sequence of subsets F,, such that (A.4) and (A.5) are satisfied with

€, = n~B/(26+1) log!? n and €, for some global constant to > 0.

Now we construct the sieves for F. Letting H{ denote the unit ball of RKHS of the Gaussian

process with rescaled parameter a and By denote the unit ball of C[0, 1] and given positive sequences

M, ry, define

Bn = Ua<rn(MnH(11) + SnIBgly
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as in van der Vaart and van Zanten (2009), with 6, = &,l,/K1, K1 = 2(2/7)"/? and let

fn:{fp,cr:,ueBn,ln<O'<hn}.

First we need to calculate N(&,, Fy, ||-||;). Observe that for oo > o1 > 02/2,

T o1 o1

2\l — p2lly, | Blo2— o)
”ful,Ul - fuzﬂzHl < <_> o + .

Taking k, = min{€,/6,1} and o}, = 1,(1 + k,)™,m > 0, we obtain a partition of [l,,, h,] as

ln=0p <of <--<op 1 <hy, <oy, with

h 1
n=|log =) —— +1. All
m ( % I > log(1 + ky,) + ( )
One can show that 3(o™ — 0% _,)/0"_1 = 3kn < &,/2. Let {a2,k =1,...,N(6n, B, || ..)} be a

d,-net of B,,. Now consider the set

{(ER,om) ik =1,...,N(0n, B, |Illc), 0 < m < ma}. (A.12)

n
m

Then for any f = fuo € Fn, we can find (11}, 0%,) such that ||p— af|| . < 6,. In addition, if one

has o € (o), _1,00], then

Hfu,a - fuz,a,’}lul < €n.
Hence the set in (A.12) is an €,-net of F,, and its covering number is given by

From the proof of Theorem 3.1 in van der Vaart and van Zanten (2009), for any M,,, r, with r,, > 0,

we obtain

_ M 2
log N (26, By, ||| o) < Kgrn<log (5—">> . (A.13)

n
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Again from the proof of Theorem 3.1 in van der Vaart and van Zanten (2009), for 7, > 1 and for
M? > 16 K37, (log(rn/0,))?, we have

K4T£6_K5T” log? Ty,

P(WA ¢ B,) < + exp{—M2/8}, (A.14)

Kslogiry,

for constants K3, K4, K5 > 0.

Next we calculate P(o ¢ [I,,, hy,]). Observe that

P(o ¢ [ln,ha]) =P(c™! < h ) +P(o! > 1Y)

0 —bohit —1\k a o]
o (b h bee _
e ( n ) o / e box/2d$
Z k! I'(ax) Ji;t

IN

k=os

bao -
< o G0 log(hn) g —bsln /2. A.15
<e ) (A.15)

Thus with h,, = O(exp{n/ @+ (logn)?"1}), I, = O(n~YZ3+D (logn)=21), r, = O(n'/ A+ (log n)?1),
M, = O(n"/®B+) (logn)!1*1), (A.14) and (A.15) implies

II(F;) = exp{—Kenep},

for some constant Kg > 0, which guarantees that (A.5) is satisfied with &, = n=%/#+1 (logn)!.

AISO with En = n_ﬁ/(2ﬁ+1) (log n)tl-l-l7 it fOHOWS fI'OIIl (All) and (A13) that
log N (e, Fa, [-l,) < Krnl/@5+D(log n)21+2,
for some constant K7 > 0. Hence max{é,, €,} = n—ﬁ/(25+1)(log n)t1+1‘ 0

A.5 Proof of Theorem 4.1

In this section, we present the detailed proof of the high probability bound for KL divergence be-

tween the true posterior and its a-VB approximation in the case of the GP-IVI.

Theorem 4.1. Under assumptions B1 through B5 it hold that m} (Q,) = mingeg, {D[q|[p(- | Y ™)}

is bounded in probability with respect to the data generating distribution. Formally, given any
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€ > 0, there exists M., N. > 0 such that for n > N., we have P (m}(Qn) > M) <e.

The objective m(Q,) can be bounded above by D[q||p(Y™ | )] for any ¢ € Q,. Choosing ¢
as a particular univariate Gaussian centered at the true parameter with variance satisfying our
assumptions B1-B5 allows us to bound the KL divergence between the true posterior p(Y(") | 0)

in high P{")-probability.

Proof. Tt follows from the definition of m}(Q,,) that for any ¢ € Q,
m;,(Qn) < D(allp(- | Y™)).

Choose p,, to be the quantile function of the distribution N(6*,02). Define the variational distri-

bution

an(0) = /¢a(9 — pin(w))du,

where o, satisfies assumption B2. By change of measure,

/%(9 () = /%(9 )b (t— 0%)dt = N(6: 6%, + 02).

Therefore ¢,(0) = N(0;0*, 0% + 02) € Q,. Denote by E, the mean respect to ¢,. Expanding
D(gnllp(Y™ | 6)),

E, [log elD ] = Eullog ga) + Ea[U(6)] + log m(Y ™) — B, [La(6,67)],

(Y ] 6)(6)

where L, (0,0%) = > | £;(6,0%). Since the sum of O,(1) terms is O,(1), it suffices to show that
each of the terms in the above sum is O,(1). The first term E,[log g,], the differential entropy of
qn, is a constant and is O,(1). A straight forward application of Markov’s inequality along with
the fact that Eéff) [m(Y(™)] = 1 shows that logm(Y(™) is O,(1).

Next, expand each of the functions D(6*||0), u2(6*]|0), and U(#) using a multivariate Taylor
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expansion around #*. Applying assumptions B4 and B5 shows

Eq[U(9)] < Ci(0® +a7),

En[u2(6%]10)] < Ca(o® + 02), (A.16)
E,[D(6*]10)] < Cu(0? + a2), (A.17)
En[D(6*||0)] > Co(c? + 02). (A.18)

Markov’s inequality shows that U () is O,(1). We will use Chebychev’s inequality to show E,, [>"7 ; ¢;(6,6*)]
is Op(1). Given ¢ > 0, choose § = [Cgco/(ECg)z]l/z. Using (A.16)-(A.18) and noting that
—E{{L,(0,0%)} = nD(6%|6), we have

P (B [L,(0,07)] < —Cu(1 + 8)n(0? + 02)} < P (B, [L,(6,67)] < —(1 + 6)nE,[D(67]|6)]}
< B { =B L(6,6%) - B (a6, 0)] <~V ED(|0)]
_ Varf? (B, [01(6.6")]) _ _ Enlpa(67]16%)]
= 820 (EL[DO10) T 82 (EL[D(6710)])?
02(0'2 + 0721) < Cg Cg
= 02nCy(0% +02)2 ~ 62nC: (0% 4+ 02) ~ 6?nCho2’

Applying assumption B2 we have ¢, /2 =172 < 0, < n~ Y2, This gives
P {/Ln(e,e*)qn(e)de < —2C,(1+ (cgco/(gcg))lﬂ)} <P {/Ln(ﬁ,ﬁ*)qn(ﬁ)dﬁ < —Cu(1+8)n(a? + ag)} <e.
Thus E,,[L, (0, 6%)] is Op(1). This completes the proof. O

A.6 Proof of Theorem 4.2

In this section, we present the detailed proof of the Bayesian risk bound for a-variational inference
in the case of the GP-IVI model. We also present a proof of the corollary for the Hellinger risk
bound. The main theorem and the lemmas are restated here for convenience. Our risk bound is

based of the following theorem,

Theorem A.1 (Yang et al. (2020)). For any ¢ € (0, 1), it holds with IP’((,ZL) -probability at least (1—C)
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that for any probability measure ¢ € Q with ¢ < py,

Y(g) +log(1/¢)
n(l —a)

1 n n)q-~, «
[ Dalb 010 <

The GP-IVI risk bound is stated as follows.
Theorem 4.2. Assume g, , satisfies (4.5) and @, < pg. It holds with ]P’((;f)—probability at
least 1 —2/[(D — 1)2(1 + O(n~2))ne?] that,

D 1
a€2+

S T ey 8 (B B0 ) |+ 06 T),

1
Zpn) *) o <
/nDa (070 )Q,u,o(e)de =71

The desired risk bound follows from bounding the right hand side of Theorem 3.2 of Yang et al.
(2020)

a __a p(Y™ ) 1
mqj(qup) T n(l-a) [/ Gu.(0) log Wde + aD(Qu,cere)]

in high ]P’(Zf)—probability in terms of the local Bayesian complexity log Py(B,,(60*,¢)). By choosing a
particular member of the variational family we can bound both the likelihood ratio integral as well
as the KL divergence between the prior and the variational approximation. The relation between

the variational distribution and the local Bayesian complexity come from the KL divergence term.

Proof. We will construct a special choice of p as follows. Denote py(8) = fo(6). Let B, (6*,¢) be

as in (4.3). Define the truncated densities

_ Jo®Ip,e-0)t) _ fo)Ip, 60 ()
fB7l(€*75) fo(u)du Py (B (0*,¢))

_ f8() 1B, 0 )(t)
JB. 67 o) F3(w)du’

fo(t) . fa)

where fz is constructed by procedure (2.5) such that ||¢, * fs — folleo = O(c?) along with its

associated distribution functions

Fy(t) = / fo(t)dt, Fp(t) = / fa(t)dt.
(—00,t]NBn(0*,) (—00,t]NBr (0% ,¢)

Define the quantile function of FVB as fi(t) = F 5 L(¢). This can be used to define the variational
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density

05,00) = [ 00l0 =T = [~ 60 =) o0t = 60 0).

0,1

with o > 0 a bandwidth that will be specified later in the proof. The main tool for the proof will

be from Proposition 2.1
4, ,(0) = 6o+ J5(0) < Jo(O)(1 + D(0)O(c”)). (A.19)

Denote Mp = supg, g ) D(0) and Kg(o) =1 + MpO(c?). We will now bound the model-fit term.

Denote the random variable

HY®™, o) = / a7, (6) loglp(y ™ | 6%)/p(Y'™ | 9)]ds.

The mean and variance (with respect to the data generating distribution) of the model-fit term are

bounded by applying (A.19),

B, o) = [ Doy |09)]1pr ") | 6)ag, ,0)d0

< /D[p(Y(”) | 0)[[p(Y ™ | )] fo(6)(1 + D(6)O(o”))do

- (n) * (n) ﬂ
< Ky )/B(G*ﬁ)D[p(Y 0P ™ | )l =740

< Kg(o‘)n&“z,
and

Var) [H(Y ™, fi,0)] < [ VIpY™ | 69)[[p(Y™ | 0)lg; (6)do

9, 0
< [ VY™ 169)|lp(y ™ | )] fo(0)(1 + D(9)O(c”))db

< K )/B(e*va)V[p(Y [P 1Ol e

— —

< Kpg(o)ne?.
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It follows from Chebyshev’s inequality that with P(?)-probability at least 1—1/[(D —1)2Kg(o)ne?]

p(Y™ | 6%)

/%AW%pwww>

] df < DKg(o)ne

Next we will bound the regularization in terms of the local Bayesian complexity. Using (A.19) we

can bound the KL divergence,

_ 430 ?) o)1 +0D®)o") | &
D[qfﬁ,oHpe]—/qﬁ’o(H)log[ ;0(9) ]deg/log[ 0 fo(0)(1 4+ O(D(6)c”))d6.

Expanding fo(#) and making use of the convention I, 6+ )(0)log(Ip, 6+.)(0)) = 0 for 0 & B, (0%, ¢)

we have

fo(0

) B, (0*,e)
Po[Bn (0% ¢)]
)

(1+0(D(#)c?))db

b
fo(0)Pg[ B, (6%, ¢)] (1+0(D(0)o"))do

B [a+00@O* )] ful

‘ﬁmw“[m@ww]][<7n
K5 (o) £2(0)

SKWW%M&W@JAWQMmW@W

_ Kps(o)
= Kj3(o)log |:]P)9(Bf(9*,€)):| .

/log lfo(o)IBn(e*,a)(l + O(D(0)0"))

Combining the bounds from both parts, we have with probability at least 1 —1/[(D —1)?Kg(o)ne?]
that

\If(qj?ﬁﬁ) < DKg(o)ne* + a ' Kg(o)log Kz(o) + a~ ' Kg(o) log {Py[B,(6*,¢)] '} .

Choosing ¢ = 1/[(D — 1)2Kz(o)ne?]. It follows from the union bound for probabilities, we have
with probability at least 1 — 2/[(D — 1)?Kg(0)ne?] that

t/lDSNaeﬂ@ﬂwweg
n

aDKg(o)ne® + Kg(o)log Kg(o) + Kg(o) log {Pg[Bn(6*,£)] 7} + log((D — 1)*Ks(0)ne?)
n(l—a)

T aa2 + i 1_ ) log {Py[B,,(0%,)] "'} + O(n_l)) .
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Recall that Kg(o) = 1+ O(c?). Choosing o = n=2/7 gives

/%D&n)(e,e*)%’o(ﬁ)dﬁ < KB(O') <1D_aa52 + n(ll_ a) log {]P)g[Bn(e*’g)]—l} + O(?’L‘l))
< 1D_aa€2 + n(ll— ) log {Pg[By,(0%,¢)] 7'} + O(n™1) + O(n?).

O

Corollary 4.1. Suppose the prior density py satisfies Assumption A1 and q satisfies (4.5). It

holds with probability tending to one as n — oo that,

1/2
{[ 1061000 18)5.000] <00,
demonstrating that the risk bound is parametric even when a flexible class of variational approxi-

mation is used.

Proof. For IID data n_lD&")(H,H*) = Dq[ps||pe<]. Applying Theorem 4.2 with ¢ = n~! and As-

sumption A1l yields,

1 Da 1
- nn) *\ A~ < 2 * —1 —1
[ AP0 (0108 < {202 s tog (BolB (0" 2]+ O
Da—-1

< m + O(n_l) = O(n_2) + O(n_l).

Combining the above with the fact that max{1, (1—«a) " ta}h?(p,q) < Da[p||q] competes the proof.
U

B Auxiliary results

In this section, we summarize results used in the proofs of main theorems in the main document.
First to guarantee that the model (2.1) leads to the optimal rate of convergence, we start from
deriving sharp bounds for the Hellinger distance between f,, -, and f,, o, for ui, us € C[0,1] and

01,09 > 0. We summarize the result in the following Lemma B.1.
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Lemma B.1. For uy,us € C[0,1] and 01,09 > 0,

20109 || 21 —,u2H2
h2 o1 oe) <1 — B L L O B.1
(Frr.o1 Faoa) < O'% —1—0'% exp{ 4(0% —1—05) (B.1)

Proof. Note that by Holder’s inequality,

1 2
Fnrn () () > { [ Vol =m@ ot uz(x))dx} |

Hence,

R R e R

1
~2 [ Vool i@V m(z))doc} dy.
0

By changing the order of integration (applying Fubini’s theorem since the function within the

integral is jointly integrable) we get

1
h2(fu17017fu2,02) S/() h2(fu1(x)7017fug(x),az)dx

A e

20109 | — ,U2H2
<1-— expy — —— 270 &
- 0% + 0’% P { 4(0’% + 0'%)

O

Remark B.1. When o1 = 03 = 0, h*(fuy.0 fuso) < 1 —exp{ || — pz||% /802 }, which implies

2
that h*(fur.0s fua,e) 3 llia = pa2llSe /o

Remark B.2. The standard inequality h*(fu, o1, fus,00) < | fun,o0 — fus,o0ll relating the Hellinger

distance to the total variation distance leads to the cruder bound

llpen — pal| |02 — o1
h2 , <Lt C Y
(fm,m fuwfz) >WU (01 A o) T 2(01 A 09)

which is linear in || — pa||l. This bound is less sharp than what is obtained in Lemma B.1 and
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does not suffice for obtaining the optimal rate of convergence.

In order to apply Lemma 8 in Ghosal and van der Vaart (2007) to control the Kullback—
Leibler divergence between the true density fo and the model f,,, we derive an upper bound

for log || fo/ fu.c|l o, in Lemma B.2.

Lemma B.2. If fy satisfies Assumption F2,

Jo

log
Juo

HM—Mﬂé
<(C4 21— B.2

o

for some constant C' > 0.

Proof. Note that

- ' (y — pu(x))?
e e
1 1 _ 9 - ,
- 2%0/0 exp{ - W}dxexp{ — HMJ*“OO}
2
> Csyyz * foly) exp{ — M}

o2
2
> o exp { - 1l

where the last inequality follows from Lemma 6 of Ghosal and van der Vaart (2007) since fy is
compactly supported by Assumption F2. This provides the desired inequality. O

Lemma B.3. Let j > 0 be the integer such that B € (27,25 + 2], and the sequence of f; is

constructed by the procedure in (2.5). Then we have fg = zqzo(—l)i(gill) @ * fo, where oY * fo =

Do * - ¥ @g * fo, the i-fold convolution of ¢, with fy.

Proof. Consider f; constructed by (2.5). When j =1, fi = 2fy — ¢4 * fo, so the form holds. By
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induction, suppose this form holds for j > 1, then

fiv1=fo—=(¢o x f; — [})
J .
:fo_i_z(_l)iH(Zi’i) z+1*f0+z (]-I-l) o) % fo
=0
A 7+ LIN j+1
= (j+2)fo+;(—1)l<i+1>¢§f)*fo+;(— < >¢<Z fo
J . .
=G +2)fo+ Z(—l)"((ﬁji) + <‘7 ; 1>)¢SJ> # o (=1)7FOF < fy

=+ 2o +Z (‘7 j_f) 05 fo+ (=17 fo

Jj+1
- (1) 4
Z <z + 1> 95 * Jo-
It holds for j + 1, which completes the proof. O

Lemma B.4. Let fy satisfy Assumptions F1 and F2. With Ay = {x : fo(z) > o™}, we have

» fola)dz = O(c*), ¢a « fj(2)dz = O(c™), (B.3)

for all non-negative integer j, sufficiently small o and sufficiently large H.

Proof. Under Assumption F2 there exists (a,b) C [0, 1] such that AS C [0,a) U (b,1] if we choose
o sufficiently small, so that fo(z) < o for x € AS. Therefore, [,. fo(z) < o < O(c?7) if we

choose H > 2. Using Proposition 2.1,

[ bostlarde= [ o)1+ 0(D@)0") < O™,
Ac Ac

With bounded D(x) and H > 28 it is easy to bound the second integral in (B.3) by O(c2%). O

Lemma B.5. Suppose fy satisfies Assumptions F1 and F2. For 8 > 2 and the integer j such that

B € (24,2j + 2|, fz is a density function.

Proof. To show fgz is a density function, it suffices to show fz is non-negative, since a simple

calculation shows that [ fg =1 for j > 0. Following the proof of Lemma 2 in Kruijer et al. (2010),
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we treat log fo as a function in C?[0,1] and obtain the same form of ¢, * fy as in (A.1). For small

enough o we can find p; € (0,1) very close to 0 such that

o * folx) = fo(z)(1 + O(DP(2)0?)) < fo(x)(1 + p1),

where D®) contains |I;(z)| and |lz(x)| to certain power, so D is bounded. Then we have

fi(@) =2fo(x) — Ko fo(z) > 2fo(x) — fo(z)(1 + p1) = fo(z)(1 = p1).

Then we treat log fy as a function with 8 =4, 7 = 1. Similarly, we can get
o % f1(2) = fol@)(1 +O(DW (z)a)),

where D™ contains |l (z)], ..., |l4(x)|. We can find 0 < py < py such that ¢, * f1(x) < fo(z)(14p2),

then can get

fa(@) = fo(x) = (9o * f1(z) — f1(2)) > fo(z)(1 — p1 — p2) > fo(z)(1 - 2p1).

Continuing this procedure, we can get f;(z) > fo(z)(1—jp1) with sufficiently small o and 1—jp; €
(0,1) and it is close to 1. Then we show f; is non-negative.

O

Lemma B.6. Let fy satisfy Assumptions F1 and F2 and let j be the integer such that § €

(24,27 +2]. Then we show that the density fz obtained by (2.5) satisfies

z)lo 7f0(m) = O(c??
[ foaytos s = 010, (B.4)

for sufficiently small o and all z € [0, 1].

Proof. Again consider the set Ay, = {z : fo(z) > o/} with arbitrarily large H. We separate the
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Kullback—Leibler divergence into

Jo Jo Jo
1 1 1
fo Og%*fﬁ /[01} fo Og¢o*f6+/01mAcf Og%*fﬁ

(o — 6o + 5) o 5o
S/Ao—wfﬁ +/Ag<<z>a fs fo)+Agfolog¢J*fﬁ- (B.5)

Under Assumption F2 and by Remark 3 in Ghosal et al. (1999), for small enough o there exists

a constant C' such that ¢, x fo > Cfy for all € [0,1]. Especially, fy satisfies ¢, * fo > fo/3 for
x € AS. Also in the proof of Lemma B.5 we can find p € (0,1) such that f3 > pfo. Then, on set

A, with sufficiently small o, we have

¢cr*fj qubo*fOZKan

where K = min{p/3,pC}. Applying (A.1), the first integral on the r.h.s. of (B.5) can be bounded
by

/ (fo— bo  [})? </ [fo(x) = fo(z)(1 + O(D(x)0”)))?
A, G * [ K fo(x)

/fo )26) 0(026).

To bound the second integral of r.h.s in (B.5), according to Remark 3 in Ghosal et al. (1999) we
get ¢ * fj > pfo/3, then we can find a constant C' < 1 such that ¢, * f; > C'fy. The second and

third term in (B.5) can be bounded by O(c??) based on Lemma B.4. O

Lemma B.7. Let Hf denote the unit ball of RKHS of the Gaussian process with rescaled parameter

a and By be the unit ball of C[0,1]. For r > 1, there exists a constant K, such that for e < 1/2,

a 1 ?
8 V(e o ) < 57 (1o ) (B

Proof. Since we can write any element of H{ as a function of Re(z) by Lemma 4.5 in van der Vaart and van Zanten
(2009), and an e-net denoted by F* over H{ is constructed through a finite set of piece-wise poly-
nomial functions, and according to Lemma 4.4 and Lemma 4.5 in Bhattacharya et al. (2014), F¢

also forms an e-net over Hl{ as long as a is sufficiently close to b. Thus we can find one set
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I'={a;,i=1,...,k} with k = |r] + 1 and ay = r, such that for any b € [0, ] there exists some a;
satisfying |b — a;| < 1, so that U;<xF® forms an e-net over U,<,H{. Since the covering number of

Ui<kF* is bounded by summation of covering number of 7%, we obtain

k 2
8 N (e Uneton . | o) < o (32 #(72) ) < logth #(7) < £ (g )

1=1

Here we write #(A) to denote the cardinality of any arbitrary set A. To prove the second inequality
above, note that the piece-wise polynomials are constructed on the partition over [0, 1], denoted by
Ui<mBi, where B;’s are disjoint interval with length R that can be considered as a non-increasing
function of a, so the total number of polynomials is non-decreasing in a. Also we find that when
building the mesh grid of the coefficients of polynomials in each B;, both the approximation error
and tail estimate are invariant to interval length R, therefore we have #(F?) < #(F?) if a < b, for

a,b e 0,r]. O

Remark B.3. With larger a we need a finer partition on [0,1] while the grid of coefficients of
piece-wise polynomial remains the same except the range and the meshwidth will change together
along with a. Since we can see the element h of RKHS ball as a function of it and with Cauchy

formula we can bound the derivatives of h by C/R™, where |h|> < C?.
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