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We investigate the maximum neutron star mass based on constraints from low-energy nuclear
physics, neutron star tidal deformabilities from GW170817, and simultaneous mass-radius mea-
surements of PSR J0030+045 from NICER. Our prior distribution is based on a combination of
nuclear modeling valid in the vicinity of normal nuclear densities together with the assumption of
a maximally stiff equation of state at high densities. The transition density is treated as a model
parameter with uniform prior. Bayesian likelihood functions involving measured neutron star tidal
deformabilities and radii are subsequently used to generate equation of state posteriors. We demon-
strate that a modification of the highly uncertain supra-saturation density equation of state allows
for the support of 2.5 − 2.6M� neutron stars without strongly modifying the properties (radius,
tidal deformability, and moment of inertia) of ∼ 1.4M� neutron stars. In our analysis, only the
softest equations of state are eliminated under this scenario. However, the properties of neutron
stars with masses ∼ 2.0M� are significantly different under the two competing assumptions that
the GW190814 secondary was a black hole or a neutron star.

PACS numbers: 21.30.-x, 21.65.Ef,

Introduction— Recently, the LIGO/Virgo Collabora-
tion (LVC) has reported measurements [1] of gravita-
tional waves resulting from a 2.50− 2.67M� “mass-gap”
object [2] in binary coalescence with a heavy (22.2 −
24.3M�) companion black hole. Not only are the mass
ratio of q = 0.112+0.008

−0.009 and inferred merger rate of

1 − 23 Gpc−3yr−1 challenging to describe [1, 3, 4] with
traditional binary evolutionary models, but taken at face
value, the mass-gap secondary component in the observa-
tion represents the discovery of either the heaviest known
neutron star (NS) or the lightest known black hole (BH),
though see Ref. [5] for an alternative scenario in which
the source of GW190814 is conjectured to be a normal
NSBH merger amplified via gravitational lensing. Nei-
ther the absence of a measurable tidal deformation sig-
nature in the gravitational waveform nor the absence of
an electromagnetic counterpart would be unexpected [6]
for a NSBH merger at the extreme mass ratio reported
in GW190814. However, equation of state inferences [7]
based on GW170817 and properties of its electromagnetic
counterpart [8–12] suggest that such heavy neutron stars
would be challenging to describe with traditional neutron
star equations of state founded in nuclear physics models
well constrained up to one or two times normal nuclear
densities.

Given the highly uncertain nature of matter at densi-
ties exceeding two to three times normal nuclear matter
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density (n0 = 0.16 fm−3 = 2.4×1014 g/cm3), where there
exists no theoretical description of the strong interaction
with controlled uncertainties, in this work we explore the
extreme scenario in which the high-density equation of
state is maximally stiff and therefore can support the
heaviest neutron stars. Our low-density equation of state
is constrained by nuclear theory and experiment as well
as recent radius and tidal deformability measurements of
∼ 1.4M� neutron stars, while the transition region to the
maximally stiff equation of state is varied between 2−4n0.
We explore the minimum transition density required to
support 2.5−2.6M� neutron stars and find that it lies in
the region n ∼ 2.5n0, which is below the central density
of neutron stars with masses M ∼ 1.4M�. Nevertheless,
we find that the existence of massive 2.5−2.6M� neutron
stars does not strongly constrain the bulk properties of
typical lighter neutron stars, and only the softest equa-
tions of state with small radii and tidal deformabilities
are excluded. In contrast, the radii and tidal deformabil-
ities of heavy neutron stars with M ∼ 2.0M� differ more
significantly under the two competing scenarios that the
secondary component of GW190814 is a black hole or a
neutron star.

Bayesian modeling of the neutron star equation of
state— Experimentally measured nuclear binding ener-
gies and bulk oscillation modes constrain [13, 14] the nu-
clear equation of state around normal nuclear density n0

for matter consisting of nearly equal numbers of neu-
trons and protons. Neutron-rich matter, on the other
hand, is challenging to produce and study in the labo-
ratory, and therefore the principal nuclear physics con-
straints on the neutron star equation of state rely in one
way or another on nuclear theory models, which nowa-
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days have a firm foundation in chiral effective field the-
ory [15–17], the low-energy realization of quantum chro-
modynamics. Previously, we have constructed [18, 19]
Bayesian posterior probability distributions for the neu-
tron star equation of state that incorporate constraints
from chiral effective field theory [20, 21] and experiment
[22, 23]. When these models were extrapolated to high
densities, the maximum neutron star mass was found to
be M ' 2.3M�. Numerous other works have employed
chiral effective field theory to study the neutron matter
equation of state [24–32], neutron star radii [33–35], tidal
deformabilities [36–38], and moments of inertia [39, 40].
In describing the properties of the heaviest neutron stars,
whose central densities can reach up to n = 5−10n0, all of
these models perform extrapolations into regions where
the composition and dynamics are poorly understood.

We take as a model for the low-density equation of
state a Taylor series expansion in the Fermi momentum
kF ∼ n1/3. This is justified since the bulk nuclear matter
equation of state is parametrized by baryon number den-
sities with polytropic index [41, 42] even in the presence
of quark matter or phase transitions. The energy den-
sity functional for neutron star matter is built from both
the pure neutron matter and isosopin-symmetric nuclear
matter equations of state, interpolated to beta equilib-
rium conditions (µn = µp + µe) enforcing a well-justified
[43] quadratic dependence on the proton-neutron asym-
metry parameter δ = (nn − np)/(nn + np):

E(n, δ) =
1

2m
τn +

1

2m
τp + [1− δ2]fs(n) + δ2fn(n) ,

(1)
where τn (τp) is the neutron (proton) kinetic energy den-
sities and fs (fn) refers to the isospin-symmetric nuclear
matter (pure neutron matter) potential energy density
expanded as follows:

fs(n) =

3∑
i=0

ai n
(2+i/3) , fn(n) =

3∑
i=0

bi n
(2+i/3) . (2)

In Eq. (2) the isospin-symmetric nuclear matter co-
efficients ~a = {a0, a1, a2, a3} are obtained by fitting to
10 equation of state calculations in chiral effective field
theory [20] up to the density 2n0. We have shown in
previous works [18] that lowering the maximum fitting
density to 1.5n0 does not qualitatively modify our prior
distributions. We then implemented experimental likeli-
hood functions involving the {a0, a1, a2, a3} parameters
from empirical nuclear matter properties, such as the sat-
uration energy, saturation density, incompressibility, and
skewness averaged over 205 realistic mean field models
fitted to the binding energies and bulk properties of fi-

nite nuclei [13]. For the parameters ~b = {b0, b1, b2, b3}
entering in the pure neutron matter energy density func-
tional fn(n), we first fit to a set of 10 chiral effective field
theory neutron matter calculations [20] up to the den-
sity 2n0. The resulting multivariate distribution is then
refined by imposing nuclear experimental constraints on
the isospin-asymmetry energy at saturation density and

its higher-order derivatives in the density [21, 44]. In
all of our neutron star structure models, we construct a
realistic outer and inner crust using the same parame-

ters (~a,~b) in a unified way implementing the liquid drop
model as explained in more detail in Ref. [45].

To explore the widest range of maximum neutron star
masses, we extend this previous model for the equation
of state probability distribution to include a transition
to the maximally-stiff equation of state consistent with
relativity, defined when the speed of sound is equal to
the speed of light. The transition density nt is taken
to have a uniform prior in the range 2n0 < nt < 4n0.
A critical density beyond 4n0 is of course possible, but
we find that it gives no significant modification to the
equation of state prior. Formally, we employ a second-
order phase transition where the phase transition starts
at E = E1 and ends at E = E2. Beyond E2, the speed of
sound is assumed to be equal to the speed of light, and
thus the pressure and energy density have a linear rela-
tion. Between E1 and E2, the speed of sound is assumed
to increase linearly as a function of energy density:

c2s(E) = c21 + (1− c21)
E − E1

∆E , ∆E = E2 − E1 . (3)

The pressure between the phase transition density is then
obtained from the integration of the speed of sound:

P = P1 + c21(E − E1) +
(1− c21)

2∆E (E − E1)2 , (4)

where ∆E = E1
10 .

The approach described above defines the prior dis-
tribution π(·) associated with the neutron star equation

of state parameters θ = (~a;~b)T. We construct Bayesian
posterior probability distributions as follows. Having ob-
served neutron star tidal deformabilities associated with
GW170817 [7, 46–48] and simultaneous mass-radius mea-
surements [49, 50] of PSR J0030+045 from the NICER
mission, the posterior distribution of θ is proportional to
L(θ)π(θ), where

L(θ) =

{ 2∏
i=1

LMR
i (θ)

}{ 2∏
i=1

LMΛ
i (θ)

}
, (5)

is the likelihood function of θ. In Eq. (5), LMR
i (θ) for

i = 1, 2 denotes the likelihood contribution from the
two NICER mass-radius measurements, and LMΛ

i (θ) for
i = 1, 2 denotes the same from the two LIGO mass-tidal
deformability measurements. Since these are four inde-
pendent measurements, the likelihood assumes a product
form.

We now detail the construction of the LMR likelihood
(the LMΛ terms are similarly derived and we omit the
details here). We first introduce some notation to con-
nect the parameter θ to the NICER mass-radius measure-
ments. Let Rθ(M) denote the (unique) radius-versus-
mass curve corresponding to the set of parameters in θ.
EachRθ(·) curve has its own maximum massMmax

θ above
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which the neutron star would collapse to a black hole, and
hence the domain of Rθ(·) is (Mmin

θ ,Mmax
θ ), where in all

cases we take Mmin
θ = 1.0M�. The exact choice of Mmin

θ
is not particularly crucial, since neither NICER nor LIGO
measurements have significant statistical weight around
1M�. The main purpose of this additional notation is
to provide a prescription to randomly generate a (M,R)
pair a priori, which proceeds by (i) sampling θ ∼ π, (ii)
given θ, sampling M uniformly between (Mmin

θ ,Mmax
θ ),

and (iii) setting R = Rθ(M). The uniform generation
of M is justified since the equation of state is agnostic
about the location on an R(M) curve.

Although the correlated uncertainty corresponding to
either NICER measurement resembles a tilted ellipse, a
closer inspection of the contour plots reveal departures
from normality. As a result, we refrain from using a para-
metric Gaussian likelihood function, and instead build
a non-parametric likelihood using a kernel density esti-
mator (kde). Specifically, we separately fit kernel den-

sity estimators f̂1 and f̂2 to the (M,R) posterior sam-
ples corresponding to Fig. 7b of Ref. [49] and Fig. 19
(“ST+PST”) of Ref. [50]. We used the R package ks to fit
the kde, employing a Gaussian kernel and the bivariate
smoothed cross-validation estimator for the bandwidth
matrix. Then, we consider an “average” of these fitted
densities over an R(M) curve as the corresponding like-
lihood, i.e., for i = 1, 2,

LMR
i (θ) =

∫ Mmax
θ

Mmin
θ

f̂i
(
M,Rθ(M)

) dM

Mmax
θ −Mmin

θ

. (6)

Next, we describe how we incorporate the secondary
“mass-gap” object into our likelihood function. That its
distribution is constrained in the interval 2.50− 2.67M�
makes it a candidate for either the lightest BH or the
heaviest NS ever observed. From Fig. 4 of [7], the distri-
bution of the secondary mass Ms resembles a Gaussian
distribution N(µs, σ

2
s ) with mean and 90% intervals given

by 2.59+0.08
−0.08. This leads to µs = 2.59 and σs = 0.048636.

Hence, for a given value of θ from the equation of state,
the secondary object is realizable as a neutron star with
probability given by

P(Ms ≤Mmax
θ ) = Φ

(
Mmax
θ − µs

σs

)
, (7)

where Φ(·) denotes the standard Gaussian cumulative

distribution function, Φ(x) =
∫ x
−∞(2π)−1/2e−x

2/2dx.

Eq. (7) then defines the likelihood of the object assum-
ing it to be a neutron star, denoted LNS

s (θ), which when
multiplied with L(θ) defined in Eq. (5) gives the overall
likelihood for θ. Similarly, if we assume the object is a
black hole, then the likelihood involves the probability
given by LBH

s (θ) : = 1− Φ
{

(Mmax
θ − µs)/σs}.

Results— In Fig. 1 we show the mass and radius prob-
ability distributions based on the Bayesian analysis de-
scribed above. In all subpanels of Fig. 1 the green and
blue contours represent the 68% (solid lines) and 95%
(dashed lines) credibility bands obtained from our kernel
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FIG. 1. (Color online) Mass and radius probability dis-
tributions for the (top-left) prior without high-density ex-
trapolation, (top-right) prior with high-density extrapolation,
(bottom-left) posterior supporting ∼ 2.6M� neutron stars,
and (bottom-right) posterior not supporting ∼ 2.6M� neu-
tron stars. The green [50] and blue [49] contours represent
the NICER 68% (solid) and 95% (dashed) credibility bands.

density estimators associated with the Riley et al. [50]
and Miller et al. [49] analyses of NICER x-ray waveform
data from PSR J0030+045. The top-left figure is our pre-
vious prior [18] without a high-density extrapolation, the
top-right panel is our new prior with uniformly varying
transition density 2n0 < nt < 4n0. In order to sup-
port ∼ 2.6M� neutron stars, we find that the transi-
tion density must satisfy nt < 2.6n0, indicating that the
relatively soft neutron star equations of state predicted
by chiral effective field theory must become fairly stiff
soon after their natural breakdown scale in the range
1 − 2n0. We see that the inclusion of the maximally
stiff equation of state at high densities naturally leads
to much larger maximum neutron star masses, up to
Mmax = 2.9M� for the lowest value of the transition
density considered nt = 2n0. We note that this new
maximum neutron star mass of Mmax = 2.9M� is al-
most certainly unphysical since it lies above the total
mass Mtot ' 2.7M� of the GW170817 remnant, which
is expected [51] to have collapsed to a black hole after be-
ing supported initially through differential rotation. The
bottom-left and bottom-right panels of Fig. 1 represent
the posterior mass-radius probability distributions under
the assumption that the secondary in GW190814 was
a neutron star or a black hole, respectively. Interest-
ingly, we see that for typical neutron stars with masses
M ∼ 1.4M�, the distribution of radii is not strongly
different under the two interpretations of the GW190814
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FIG. 2. (Color online) Radius distribution for a heavy neutron
star with mass 2.14M� (shaded) under the two assumptions
that the GW190814 secondary was a black hole (blue) or a
neutron star (red). The dashed lines correspond to varying
neutron star masses in the range 2.04−2.24M� with spacing
∆M = 0.01M�.

secondary. This is due to the fact that the bulk proper-
ties of the average neutron star are strongly correlated
[18, 52, 53] with the pressure of beta-equilibrium matter
at the density n = 2n0, which is close to the regime where
nuclear physics places strong constraints on the equation
of state. However, we do observe that the existence of
massive (2.5− 2.6M�) neutron stars would rule out the
softest equations of state.

Our previous finding [18] for the radius of a 1.4M�
neutron star at the 95% credibility level was 10.3 ≤
R1.4 ≤ 12.9 km with the most probable radius as 12.2 km.
Including the new kde constraints from the two NICER
and GW170817 analyses now give at the 95% credibil-
ity level 10.7 ≤ R1.4 ≤ 12.8 km under the assumption
LBH

s (θ) and 11.6 ≤ R1.4 ≤ 12.9 km under the assump-
tion LNS

s (θ). Our finding is consistent with the determi-
nation of mass and radius from the cooling tail method
[54], where the source for the analysis is different. We
see from Fig. 1 that heavy neutron stars, such as PSR
J0740+6620 with mass 2.14+0.10

−0.09M� [55], have signifi-
cantly different radius probability distributions under our
two assumptions for the GW190814 likelihood, LBH

s (θ)
and LNS

s (θ). In Fig. 2 we show in the shaded regions
the posterior probability distributions for the radius of a
2.14M� neutron star under the two assumptions that the
GW190814 secondary was a black hole (blue) or a neu-
tron star (red). The notation P (R|Mmax > 2.59M�) cor-
responds to the likelihood assumption LNS

s (θ) and like-
wise P (R|Mmax < 2.59M�) corresponds to LBH

s (θ). The
stiff equations of state needed to support the heaviest
neutron stars produce a narrow and large neutron star
radius at this mass, while softer equations of state lead to
statistically significant smaller radii. In Fig. 2 the dashed
lines correspond to different heavy neutron star masses
ranging from 2.04− 2.24M� at spacing ∆M = 0.01M�.
The radius distributions for the lightest neutron stars ex-
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FIG. 3. (Color online) Probability distributions for the tidal
deformability versus mass under the two assumptions LNS

s (θ)
(left) and LBH

s (θ) (right). The blue and green contours show
the 68% (solid) and 95% (dashed) credibility bands associated
with the primary and secondary in GW170817, respectively.

tend to the smallest radii for both posteriors. We find at
the 95% credibility level that the radius of a 2.14M�
neutron star is 10.1 < R2.14 < 12.3 km under the as-
sumption LBH

s (θ) and 11.9 < R2.14 < 13.2 km under the
assumption LNS

s (θ).

In Fig. 3 we show the two posterior probability distri-
butions for the tidal deformability as a function of mass
under the two assumption for the likelihood LBH

s (θ) and
LNS

s (θ). In both subpanels the blue and green contours
denote the 68% (solid lines) and 95% (dashed lines) cred-
ibility bands from our kde associated with the primary
and secondary components, respectively, of GW170817.
In Fig. 4 we show the tidal deformability of a typi-
cal 1.4M� neutron star under the assumptions that the
GW190814 secondary was a neutron star (red) or black
hole (blue). Our previous 95% credibility interval in Ref.
[18] was found to be 136 < Λ1.4 < 519. From the new
posterior distribution including NICER and GW170817
measurements as well as the assumption LBH

s (θ), we find
170 < Λ1.4 < 530. Under the opposite scenario, LNS

s (θ),
we likewise find 313 < Λ1.4 < 575 at the 95% credibility
level. There remains a significant overlap between the
two distributions, but we observe a broad low tidal de-
formability region possible only in the absence of heavy
neutron stars with masses 2.5− 2.6M�.

Following the discovery of the double pulsar system
J0737-3039, it was suggested [56, 57] that precise radio
timing measurements could enable the extraction of spin-
orbit coupling effects on the system’s periastron advance
and hence the moment of inertia of PSR J0737-3039A.
The mass of PSR J0737-3039A is precisely known to be
1.338M�, and in Fig. 5 we plot the associated predictions
for its moment of inertia assuming that the equation of
state can support 2.5−2.6M� neutron stars (red) or not
(blue). For such a relatively light neutron star, there is
an even smaller difference between the moment of iner-
tia probability distributions under the two assumptions
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FIG. 4. (Color online) Probability distributions for the tidal
deformability of a 1.4M� neutron star under the assumption
that the GW190814 secondary was a black hole (blue) or a
neutron star (red).
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FIG. 5. (Color online) Probability distributions for the mo-
ment of inertia of PSR J0737-3039A with mass 1.338M� un-
der the two assumptions that the GW190814 secondary was
a black hole (blue) or a neutron star (red).

LBH
s (θ) and LNS

s (θ). Previously, we found [39] that at
the 95% credibility level the moment of inertia of J0737-
3039A should lie in the range 1.04 × 1045 < I1.338 <
1.51 × 1045 g cm2. In our revised modeling, including
NICER and GW170817 data, we now find a new sta-
tistical range 1.09 × 1045 < I1.338 < 1.53 × 1045 g cm2

under the assumption LBH
s (θ) and 1.25× 1045 < I1.338 <

1.56 × 1045 g cm2 under the assumption LNS
s (θ). After

accounting for the NICER likelihood functions, we pre-
dict a somewhat larger moment of inertia for 1.338M�
as well as a reduced statistical uncertainty.

Summary— The existence of heavy neutron stars with
masses 2.5−2.6M� are a challenge to explain with equa-
tions of state smoothly extrapolated from the low-density
regime (1 − 2n0) constrained by nuclear physics to the
highest density regime (5−10n0) encountered in neutron
star cores. We have demonstrated that a modification
of the highly uncertain supra-saturation density equa-
tion of state allows for the support of 2.5− 2.6M� neu-
tron stars consistent with state-of-the-art nuclear theory
modeling within the framework of chiral effective field
theory, nuclear experiments involving medium-mass and
heavy isotopes, as well as current observations of neutron
star radii and tidal deformabilities, all integrated within
a consistent Bayesian statistical framework. While the
nature of the secondary in GW190814 cannot be deter-
mined within our present modeling (see also Refs. [58–
61]), we note that we have observed strong correlations
between the maximum neutron star mass and the radii
of heavy neutron stars. We suggest that measurements
of very massive (∼ 2.0M�) neutron star radii (or tidal
deformabilities), such as a NICER measurement of the
PSR J0740+6620 radius, may provide a useful and strong
constraint on the nuclear equation of state at supra-
saturation density.
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