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Abstract

Modern genomic studies are increasingly focused on identifying more and more genes clin-

ically associated with a health response. Commonly used Bayesian shrinkage priors are de-

signed primarily to detect only a handful of signals when the dimension of the predictors is

very high. In this article, we investigate the performance of a popular continuous shrinkage

prior in the presence of relatively large number of true signals. We draw attention to an un-

desirable phenomenon; the posterior mean is rendered very close to a null vector, caused by

a sharp underestimation of the global-scale parameter. The phenomenon is triggered by the

absence of a tail-index controlling mechanism in the Bayesian shrinkage priors. We provide

a remedy by developing a global-local-tail shrinkage prior which can automatically learn the

tail-index and can provide accurate inference even in the presence of moderately large num-

ber of signals. The collapsing behavior of the Horseshoe with its remedy is exemplified in

numerical examples and in two gene expression datasets.
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1. INTRODUCTION

Development of sophisticated data acquisition techniques in gene expression microarray, among

many other fields triggered the development of innovative statistical methods [7, 18, 22] to identify

relevant predictors associated with a response out of a large number of predictors, but only with a

smaller number of samples. This large p, small n paradigm is arguably the most researched topic

in the last decade.

Focusing on the linear regression model for simplicity, consider responses yi corresponding to

p dimensional covariates xi. Let y = (y1, . . . , yn)T and X denote the n × p covariate matrix with

xi as the rows and

y = Xβ + σε, ε ∼ Nn(0, In).

When p � n, a natural assumption for a meaningful inference on β is to assume sparsity, i.e.,

substantially many coefficients in β are assumed to be zeros or approximately zeros. This was

believed to be a reasonable assumption in the context of gene-expression studies [16] where it is

believed that only a fraction of genes is really responsible for affecting the response. The true non-

zero coefficients are referred to as the signal coefficients and the remaining are noise coefficients.

Throughout the remainder of the paper, we make use of the following definition of the sparsity

level. Let q denote the number of true non-zero signals in β: then the following ratio s = q/p is

referred to as the sparsity level

s =
q

p
=

the number of relevant predictors
total number of predictors

. (1)

Statisticians have devised a number of penalized regression techniques for estimating β in

p� n setting under the assumption of sparsity [22]. From a Bayesian point view, sparsity favoring

mixture priors with separate control on the signal and noise coefficients have been proposed [19,

26, 31, 51]. Although they often lead to attractive theoretical properties [10, 11], computational

issues and considerations that many of the βj’s may be small but not exactly zero has led to a rich
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variety of continuous shrinkage priors being proposed recently [8, 9, 21, 33, 43], which can be

unified through a global-local (GL) scale mixture representation of [37]. Among the continuous

shrinkage priors, the Horseshoe [8, 9] is possibly the most visible and acclaimed method.

In this paper, we revisit the performance of the Horseshoe prior on real applications involving

gene-expression studies. It is important to point out that the posterior obtained using Horseshoe has

remarkable finite sample performance and enjoys several optimal theoretical properties [46, 47, 48,

49] when the underlying sparsity level s in (1) is very small in the high dimensional setting p ≥ n.

However, in many applications as outlined in Section 3, it is necessary to consider a moderately

sparse regime with a relatively higher value of s to reflect the fact that there are many small signals,

possibly with a strong correlation amongst corresponding covariates. This is especially true in

cancer studies where the number of interesting genes, i.e., q in (1) is growing in commensurate

with the denominator p in (1) which itself has grown enormously due to the success of the Human

Genome Project. For example, BRCA1 and BRCA2 are linked to the risk of breast cancer risk

over 20 years ago. However, ‘beyond BRCA1 & 2 movement’ [38] has led to discovery of more

interesting protein coding genes [41, 42] with the latest estimate of the protein-coding gene count

being p = 21, 306 [50].

In this paper, we empirically showed that when the true sparsity level is moderate, the Horse-

shoe may end up estimating β by an approximately null vector. We refer to this as a collapsing be-

havior typically caused by underestimation of the global-scale parameters; a similar phenomenon is

also observed by [2]. We demonstrate this in a wide variety of simulation examples and in popular

gene expression datasets. From a theoretical standpoint, we provide justification to this collapsing

behavior by examining the tail behavior of the Horseshoe. In particular, the fixed tail-index limits

the flexibility to estimate a moderately large number of signals resulting in very small estimates

of the global-scale parameter. We propose a remedy for this collapsing behavior by introducing a

tail-controlling mechanism within the Horseshoe formulation, called the global-local-tail shrink-

age priors. We demonstrate superior performance of the prior in simulated and real examples.
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2. A REVIEW OF CONTINUOUS SHRINKAGE PRIORS

A popular computationally scalable class of continuous shrinkage priors can be represented as

global-local scale mixtures of Gaussian distribution:

βj|λj, τ, σ2 ∼ N1(0, λ
2
jτ

2σ2), σ2 ∼ h(σ2), (j = 1, · · · , p), (2)

λj ∼ f(λj), τ ∼ g(τ), (j = 1, · · · , p), (3)

where f , g, and h are densities supported on (0,∞). The top-level scale parameters, {λj}pj=1

and τ in (2) – (3), are referred to as the local-scale parameters and the global-scale parameter,

respectively. Different choices of f and g for the top-level scale parameters lead to different class

of priors [4]. Ideally, g should have a substantial mass near zero to enforce shrinkage towards

zero which is compensated by allowing f to have heavier tails in order to capture the large signals

and prevent over-shrinkage. In the high-dimensional setting, the choices of f and g play a key

role in controlling the effective sparsity and concentration of the prior and posterior distributions

[1, 29, 34, 37, 40, 53]. Choosing a half-Cauchy distribution, π(x) = C+(x|0, 1) ∝ 1/(1 + x2),

for f and g in (3) leads to the Horseshoe [9]. Under the sparsity assumption s → 0 as n, p →

∞, it is known that the posterior mean of Horseshoe, the Horseshoe estimator, possesses many

nice theoretical properties [1, 4, 37, 40, 48]. For instance, the Horseshoe estimator is robust and

attains the minimax-optimal rate for squared error loss up to a multiplicative constant under certain

conditions [45, 49]. Highly scalable algorithms are recently proposed for the Horseshoe [5, 25].

3. COLLAPSING BEHAVIOR OF THE HORSESHOE ESTIMATOR IN GENE

EXPRESSION DATA

In the following, we analyze the prostrate cancer data [6, 14, 15, 16, 39], which has been widely

adopted as a prototype real application in high dimensional sparse regression problems. A similar

analysis with a breast cancer data is in §1.1 of the supplementary materials.
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3.1 The Horseshoe applied to the prostate cancer data

The prostate cancer data is summarized in a matrix X ∈ <102×6033 comprising of two parts. The

first 50 rows of X , X[1 : 50, ·] ∈ <50×6033, correspond to healthy controls, and the remaining

rows, X[51 : 102, ·] ∈ <52×6033, correspond to cancer patients. The j-th column vector of X ,

X[·, j] ∈ <102, j = 1, · · · , 6, 033, represents gene expression levels of the j-th gene.

The main goal of the study is to discover a small number of interesting genes whose expression

levels differ between the two classes [16]. Such genes are then investigated for a causal link for

the development of prostate cancer. First, a multiple testing procedure for this data is carried out

as follows: For each j = 1, · · · , 6, 033, a two-sample t-test statistic with 100 degrees of freedom

is obtained based on X[·, j] ∈ <102, and the t-test statistics are converted to z-test statistics using

quantile transformation yj = Φ−1(F100 d.f.(tj)), where Φ(·) and F100 d.f.(·) are distribution functions

of N1(0, 1) and t100, respectively; refer to Section 2.1 of [16]. The j-th null hypothesis H0j posits

no difference in the gene expression levels for the j-th gene between the healthy controls and

cancer patients. If the global null hypothesis ∩6033
j=1H0j is true, the histogram of {yj}6033j=1 should

mimic a standard normal density closely. The histogram of {yj}6033i=1 along with the standard normal

density is displayed in the left panel in the Figure 1. Presence of outliers, possibly corresponding

to cancerous genes [15], is evident. As in [16], we convert the problem to an estimation problem

where a p-dimensional vector β ∈ <p, p = 6, 033 is estimated from a sparse normal means model:

y = β + σε, ε ∼ Np(0, Ip) (4)

where σ is unknown. We use the Horseshoe prior πHS(β) for β, and the Jeffrey’s prior for σ2,

π(σ2) ∝ 1/σ2 [24]. For implementation, the R function Horseshoe within the R package

Horseshoe is used. More specifically, we used Horseshoe(y = y, X = X, method.tau

= "halfCauchy", method.sigma = "Jeffreys", burn = 10000, nmc = 10000,

thin = 100) where y = y and X = Ip, to produce 100 thinned realizations from the posterior

distribution π(β|y) via Markov chain Monte Carlo (MCMC).

To investigate the behavior of the Horseshoe as the number of genes used increases, we con-
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Figure 1: Histogram of z-values {yj}6033j=1 (left panel), and the scatter plot of {(yj, β̂j)}pj=1 (right
panel) obtained using Horseshoe when applied to dataset Pl, l = 1, 2, 3, 4. Dotted line is y = x.

structed four datasets, P1 = {yj}p=50
j=1 , P2 = {yj}p=100

j=1 , P3 = {yj}p=200
j=1 , and P4 = {yj}p=6033

j=1 Note

that P4 is the full dataset, and P stands for prostate. The results of posterior inference are shown

on the right panel of the Figure 1. In the panel, we plotted p ordered pairs {(yj, β̂j)}pj=1 such that

β̂j represents the posterior mean of βj , which are obtained from each dataset Pl, l = 1, 2, 3, and 4.

From the robustness property of Horseshoe, we expect to observe an ideal reverse-S-shape

curve for {(yj, β̂j)}pj=1 as in Figure 1 of [49]. However, the right panel of the Figure 1 shows

that the robustness property is manifested only when p = 50, and the property disappears as p

increases, and when p = 200 or more the posterior mean of β ∈ <p is essentially rendered a

p-dimensional zero vector.

4. UNDERSTANDING THE COLLAPSING BEHAVIOR OF THE HORSESHOE

ESTIMATOR

We first elaborate on the generation of high-dimensional data (y,X) ∈ <n × <n×p from a sparse

linear regression (1) corresponding to a simulation environment associated with a setting (n, p, q,
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%, SNR),

(y,X) ∼ p(y,X) = Nn(y|Xβ0, σ2
0In) ·

n∏

i=1

Np(XT

i |0,Υ(%)), Υ(%) = %Jp + (1− %)Ip, (5)

where p(y,X) is a true data generating process, and β0 is a p-dimensional true data generating

parameter such that β0,1 = · · · = β0,q = 1 and β0,q+1 = · · · = β0,p = 0. The first q coefficients

of β0 are the true signals of unit signal strengths. I and J indicate an identity matrix and a matrix

whose elements are ones, respectively. The signal-to-noise ratio (SNR) is defined by SNR =

var(Xβ0)/var(σ0ε). The value % is a number associated with column-wise correlations in the

design matrix X .

We use the following three steps to generate data (y,X) according to (5). i) Generate a matrix

X ∈ <n×p where each row vector XT
i ∈ <p is independently sampled from Np(0,Υ(%)). Next,

center the matrix X column-wise so that each column vector X[·, j] ∈ <n (j = 1, · · · , p) has zero

mean. Then, normalize each vector to make Euclidean norm to be one. ii) Generate n-dimensional

Gaussian errors ε ∼ Nn(0, In). iii) Add the mean Xβ0 and the error σ0ε to create responses

y = Xβ0 + σ0ε, where σ2
0 = var(Xβ0)/{SNR · var(ε)} and var(z) =

∑n
i=1(zi − z̄)2/(n − 1) for

z ∈ <n.

A single simulation environment (n, p, q, %, SNR) corresponds to multiple replications of

the datasets (y,X). To investigate the behavior of the Horseshoe when the sparsity level s in

(1) increases, we generated four artificial datasets Al = (y,X) ∈ <n × <n×p, l = 1, 2, 3, 4,

corresponding to four simulation environments (n = 100, p = 500, q, % = 0, SNR = 5) such

that q = 2, 5, 8, 13. Therefore, the sparsity levels of the four datasets Al (l = 1, 2, 3, 4) are

2/500 = 0.004 (A1), 5/500 = 0.01 (A2), 8/500 = 0.016 (A3), and 13/500 = 0.026 (A4),

respectively.

The results of posterior inference are displayed in Figure 2. Panels are arranged in a way that

the sparsity level increases from the left to right. Panels in the first, second, and third rows in the

Figure 2 display the 95% credible intervals for {βj}pj=1, and those of {λj}pj=1, and posterior corre-

lations {cor(λj, τ |y)}pj=1, respectively. For the ease of visualization, results corresponding to only
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Figure 2: Results of posterior inference by using the Horseshoe under varying sparsity levels: A1

(first column), A2 (second column), A3 (third column), and A4 (fourth column). The results of
posterior inference corresponding to signals and noises are colored in blue and red, respectively,
and the truth β0 is colored in green. Posterior means of τ corresponding to the four datasets are
1.41 · 10−6 (A1), 0.05 (A2), 0.13 (A3), and 6.53 · 10−15 (A4), respectively.

the first 50 coefficients of β are plotted. The results of posterior inference corresponding to sig-

nals and noises are colored blue and red, respectively, and the true coefficient vector β0 is colored

green. The posterior means of τ corresponding to the four datasets are 1.41 ·10−6 (A1), 0.05 (A2),

0.13 (A3), and 6.53 · 10−15 (A4), respectively. Hence, the posterior mean of τ gradually increases

as the sparsity level increases and after some threshold it suddenly drops to a very small number.

The relationship between the local {λj}pj=1 and the global τ scale parameters is the key to compre-

hend how the Horseshoe detects signals from a posteriori perspective. Observe that τ is associated

with the sparsity level [37], and is expected to be large in presence of a relatively high number

of signals. The panels on the third row of the Figure 2 shows weak negative posterior correlation

between λj and τ , cor(λj, τ |y), for each j = 1, · · · , p. As seen on the panels on the first and

third rows of the Figure 2, the selected signals among the p coefficients {βj}pj=1, saying {βj}j∈Q,
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Q ⊂ P = {1, · · · , p}, are those whose corresponding posterior correlations {cor(λj, τ |y)}j∈Q
attain even stronger negative values than others {cor(λj, τ |y)}j∈P−Q. This implies that if there are

no discriminable differences among the correlations {cor(λj, τ |y)}j∈P then the Horseshoe loses its

signal detection mechanism and a collapse takes place, as seen on the panel of the fourth column.

It is important to emphasize that the collapsing behavior for the Horseshoe was pointed out

by several authors but did not draw much attention in the literature. Recently, [52] in discussion

of [48] discussed dangers of collapsing of marginal maximum-likelihood estimator for the global-

scale parameter when the sparsity level is very small. On the other hand, the focal point of our

research is to investigate collapsing behavior of the fully Bayesian Horseshoe estimator, i.e., where

τ is assumed to follow C+(0, 1) in the case when the sparsity level is moderately large.

4.1 Restricted tail-heaviness of Horseshoe

In the following, we shall aim to understand the tail-heaviness of the Horseshoe and how it may

affect the signal detection mechanism. Suppose σ2 = 1 and consider the univariate covariate

free formulation of (1) as y|β ∼ N1(β, 1), β|λ, τ ∼ N1(0, λ
2τ 2), and λ ∼ C+(0, 1) with fixed

τ > 0. Our focus is on the tail part of the marginal density of the Horseshoe conditional on τ ,

as denoted by πHS(β|τ) in (1) of the supplementary document. We also aim to understand the

importance of tail-heaviness to handle moderately larger number of signals and the behavior of the

tail of πHS(β|τ) as τ changes. To answer this question, we begin with defining tail-heaviness of a

measurable function ρ using the notion of regular variation [17, 20, 27, 28].

Definition 1. A measurable function ρ : (0,∞) → (0,∞) is called regularly varying of index α,

if there exists α ∈ < such that limx→∞ ρ(cx)/ρ(x) = c−α, for any c > 0. If α = 0, then ρ is said

to be slowly varying.

In general, every regularly varying function ρ of index α has a representation ρ(x) = L(x)·x−α

where L is a slowly varying function [27]. In extreme value theory, the Definition 1 is utilized

to quantify the tail-heaviness of a positive random variable X ∼ F where F is the distribution

function of X by replacing the measurable function ρ in the Definition 1 with the tail (survival)
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function F̄ = 1 − F . This leads to F̄ (x) = L(x) · x−α, where α represents the decay rate F̄

at infinity, called the tail-index of the random variable X or the tail-index of the density f = F ′

[13, 17]. The reciprocal ξ = 1/α is called the shape parameter. This notion can be generalized to a

random variable supported on (−∞,∞) in a similar fashion by quantifying the tail behavior both

at∞ and −∞.

Proposition 2. Assume β|λ, τ ∼ N1(0, τ
2λ2), λ ∼ C+(0, 1), and τ > 0. Then the tail-index of

πHS(β|τ) is α = 1 for any τ > 0.

Proposition 2 is proved in §7 of the supplementary materials. The tail-index of half-Cauchy

density C+(0, 1) is α = 1 [17]. Proposition 2 implies that the tail-heaviness of the marginal density

πHS(β|τ) inherits that of the local-scale density π(λ) = C+(0, 1), and is fixed for any choice of

the global-scale parameter τ > 0. Hence the Horseshoe is unable to adjust the tail of πHS(β|τ) to

deal with various sparsity regimes [36]. Horseshoe is designed to perform well in a very sparse

situation since setting α = 1 is sufficient to put an enough mass on the tail region of πHS(β|τ).

This is also backed up by the numerical results, refer to left panels in the Figure 2. However, as the

sparsity level increases, the requirement of placing more mass in the tail part of πHS(β|τ) increases

and α = 1 is not sufficiently large to achieve this. This is shown in the right panel of Figure 2.

5. A REMEDY FOR THE COLLAPSING BEHAVIOR

We propose a fully Bayesian remedy for the collapsing behavior of the Horseshoe by introducing a

new hierarchical formulation. In the following, we expand the existing framework of global-local

shrinkage priors to a new framework called the global-local-tail shrinkage priors. The global-scale

parameter τ is introduced as the scale parameter of a local-scale density f with tail-index α, or

equivalently, shape parameter ξ = 1/α.

βj|λj, σ2 ∼ N1(0, λ
2
jσ

2), σ2 ∼ h(σ2), (j = 1, · · · , p), (6)

λj|τ, ξ ∼ f(λj|τ, ξ), (j = 1, · · · , p), (7)

(τ, ξ) ∼ g(τ, ξ), (8)
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where f is a density supported on (0,∞) with the scale parameter τ > 0 and the shape parameter

ξ > 0 such that the distribution function F (λ|τ, ξ) =
∫ λ
0
f(t|τ, ξ)dt for λ > 0 satisfies F̄ (λ|τ, ξ) =

1 − F (λ|τ, ξ) = L(λ) · λ−(1/ξ) such that L is a slowly varying function. h is a density supported

on (0,∞) and g is a joint density supported on (0,∞)× (0,∞). We call the formulation (6) – (8)

the global-local-tail shrinkage prior because the presence of the shape parameter ξ which measures

the tail-heaviness of f .

Table 1 lists examples of f with unit scale parameter τ = 1. All distributions in the table are

supported on (0,∞) with a positive shape parameter ξ > 0. The half-Cauchy distribution and

the half-Levy distributions are derived from the half-α-stable distribution with the tail-index α by

fixing α to be 1 and 1/2, respectively. More examples for f can be found in [17, 23].

The Horseshoe is a member of the global-local-tail shrinkage priors (6) – (8) when (i) the local-

scale density f is chosen by the half-α-stable density, and (ii) the tail-index α is fixed with 1 or

equivalently ξ = 1.

Table 1: Unit scaled densities for f in (7)
f(λ|τ = 1, ξ) Shape parameter ξ

Half-α-stable distribution non-closed form ξ
Half-Cauchy distribution 2{π(1 + λ2)}−1 1

Half-Levy distribution λ−3/2exp{−1/(2λ)}/
√
2π 2

Loggamma distribution {(1 + λ)−(1/ξ+1)}/ξ ξ

Generalized extreme value distribution exp {−(1 + ξλ)−1/ξ}(1 + ξλ)−(1/ξ+1) ξ

Generalized Pareto distribution (1 + ξλ)−(1/ξ+1) ξ

In the formulation of global-local-tail shrinkage prior (6)-(8), we use the generalized Pareto

distribution (GPD) [35], π(x) = GPD(x|τ, ξ) = (1/τ) · (1 + ξx/τ)−(1/ξ+1) for the local-scale

density f , and a truncated inverse-gamma-lognormal joint density for the joint density g, g(τ, ξ) =

IG(τ |p/ξ+1, 1)I(0,∞)(τ)·{log N (ξ|µ, ρ2)I(1/2,∞)(ξ)}/D, whereD = D(µ, ρ2) =
∫∞
1/2

log N (ξ|µ, ρ2)dξ

11
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Figure 3: DAG representation of y|β, σ2 ∼ Nn(Xβ, σ2In) and β ∼ πGLT(β).

is the normaliser of g(τ, ξ),

βj|λj, σ2 ∼ N1(0, λ
2
jσ

2), σ2 ∼ π(σ2) ∝ 1/σ2, (j = 1, · · · , p), (9)

λj|τ, ξ ∼ GPD(τ, ξ), (j = 1, · · · , p), (10)

τ |ξ ∼ IG(p/ξ + 1, 1), (11)

ξ ∼ log N (µ, ρ2)I(1/2,∞), µ ∈ <, ρ2 > 0. (12)

We call this specific hierarchical form (9)-(12) the GLT prior, denoted as β ∼ πGLT(β). A di-

rected asymmetric graphical (DAG) representation of y|β, σ2 ∼ Nn(Xβ, σ2In) and β ∼ πGLT(β)

is shown in Figure 3. A full description of posterior computation is provided in §5 of the sup-

plementary document. §5 contains an automatic-tuning for the hyper-parameter, µ and ρ2, using

extreme value theory which enables learning of ξ adaptive to the unknown sparsity level. Hence-

forth, we omit to write the suffix ‘GLT’ except for πGLT(β), and to avoid notational confusion

with the results from the Horseshoe the suffix ‘HS’ is explicitly used as we did in Lemma 1 in the

supplementary materials and Proposition 2.

Figure 4 displays the results of posterior inference obtained using the GLT prior when applied

to the same four artificial datasets Al (l = 1, 2, 3, 4) used in Figure 2. The posterior correlations

{cor(λj, ξ|y)}pj=1 are additionally plotted in the panels on the fourth row of the Figure 4. Note

that the GLT prior can detect signals in the dataset A4 unlike the Horseshoe. The posterior means

of global-scale parameter τ corresponding to the four datasets are 0.003 (A1), 0.003 (A2), 0.004

(A3), and 0.004 (A4), respectively. The posterior means of the shape parameter ξ corresponding

to the four datasets are 2.010 (A1), 2.134 (A2), 2.235 (A3), 2.347 (A4), respectively. The signal
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Figure 4: Results of posterior inference obtained using the GLT prior when applied to the same
four artificial datasets used in the Figure 2: A1 (first column), A2 (second column), A3 (third col-
umn), and A4 (fourth column). Posterior means of (τ, ξ) corresponding to the four datasets are
(0.003, 2.010) (A1), (0.004, 2.134) (A2), (0.004, 2.235) (A3), and (0.004, 2.347) (A4), respec-
tively.
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detection mechanism of the GLT prior is accomplished by the p local-scale parameters {λj}pj=1

which embed the uncertainty about both the global-scale parameter τ and the shape parameter ξ.

Also, since the estimates of τ and ξ are nearly independent from those of {λj}pj=1, refer to the third

and the forth rows of the Figure 4. The estimates of τ are not susceptible to the collapse even when

the number of true signals is relatively large.

We must point out at this point that our strategy of introducing a tail controlling mechanism is

not a unique remedy. We have implemented simulation studies for variant versions for the Horse-

shoe, namely truncated Horseshoe [44], Horseshoe-plus [3], and regularized Horseshoe [36], un-

der the three scenarios discussed in Section 6, and we observed a similar collapse for the truncated

Horseshoe but not for the other two variants. In majority of the cases, we observe superior perfor-

mance of the the GLT prior and the truncated Horseshoe compared to the others, with the GLT prior

achieve better mean squared error for the signal estimation part. Refer to §4 of the supplementary

materials.

5.1 Properties of the GLT prior

For the purpose of prior analysis for the GLT prior, we shall work with the univariate form, y|β ∼

N1(β, 1), β|λ ∼ N1(0, λ
2), and λ|τ, ξ ∼ GPD(τ, ξ), with fixed τ > 0 and ξ > 1/2.

Proposition 3 (Marginal density of the GLT prior).

(a) Suppose β|λ ∼ N1(0, λ
2), λ ∼ GPD(τ, ξ), τ > 0 and ξ > 1/2. Then:

π(β|τ, ξ) =
∞∑

k=0

ak{ψS
k(β) + ψR

k (β)}, (13)

where K = 1/(τ23/2π1/2), Z(β) = β2ξ2/(2τ 2), ak = (−1)k · K ·
(
1/ξ+k
k

)
, ψS

k(β) =

Ek/2+1{Z(β)}, and ψR
k (β) = Z(β)−

1+1/ξ+k
2 γ{(1 + 1/ξ + k)/2, Z(β)}.

Two special functions are used in (13): (i) the generalized exponential-integral function of

real order [12, 30] Es(x) =
∫∞
1
e−xtt−sdt (x > 0, s ∈ <), and (ii) the incomplete lower

gamma function γ(s, x) =
∫ x
0
ts−1e−tdt (s, x ∈ <). The generalized binomial coefficient

(
1/ξ+k
k

)
is (1/ξ + k)(1/ξ + k − 1) · · · (1/ξ + 1)/k! if k ∈ {1, 2, . . .}, and zero if k = 0.
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(b) Suppose λ ∼ GPD(τ, ξ), κ = 1/(1 + λ2) ∈ (0, 1), τ > 0 and ξ > 1/2. Then:

π(κ|τ, ξ) =
τ 1/ξ

2
· κ1/(2ξ)−1(1− κ)−1/2

{τκ1/2 + ξ(1− κ)1/2}(1+1/ξ)
. (14)

Proposition 3 is proved in §8 of the supplementary materials. Figure 5 displays the marginal

densities of β obtained from the Horseshoe πHS(β|τ) (τ > 0) (1) in the supplementary materials

and the GLT prior π(β|τ, ξ) (τ > 0, ξ > 1/2) (13) for different values of values τ and ξ. Note

that π(β|τ, ξ) (13) is analytically expressed as an alternating series whose summands are separated

into two terms: {ψS
k(β)}∞k=0 and {ψR

k (β)}∞k=0. The superscripts S and R stand for shrinkage and

robustness, respectively. Corollary 4 implies that the roles of {ψS
k(β)}∞k=0 and {ψR

k (β)}∞k=0 in the

GLT prior are separably interpretable in the limiting sense as |β| → 0 and |β| → ∞.

Corollary 4. Suppose β|λ ∼ N1(0, λ
2), λ ∼ GPD(τ, ξ), τ > 0, and ξ > 1/2. Let k ∈ {0} ∪

{1, 2, . . .}. Then:

(a) If k = 0, then lim|β|→0 ψ
S
k(β) =∞; if k ∈ {1, 2, . . .}, then lim|β|→0 π

S
k(β) = 2/k <∞.

(b) If k ∈ {0} ∪ {1, 2, . . .}, then lim|β|→∞ ψS
k(β) = 0 with squared exponential rate.

(c) If k ∈ {0} ∪ {1, 2, . . .}, then lim|β|→0 ψ
R
k (β) = 2/(1 + 1/ξ + k) <∞.

(d) If k ∈ {0} ∪ {1, 2, . . .}, then ψR
k (β) is regularly varying with index 1 + 1/ξ + k.

Interpretations of the Corollary 4 are as follows. (a) implies that the marginal of β of the

GLT prior π(β|τ, ξ) possesses infinite spike at origin for any τ > 0, ξ > 1/2, as seen in the

Figure 5. This is a feature shared by the Horseshoe [9] as well. The pole at zero is caused by

the exponential-integral function of the first order: limx→0+ E1(x) =∞ [12] and generates a very

strong shrinkage on β towards zero. By (a) and (c) from the Corollary 4, we have lim|β|→0 ψ
R
k (β) =

2/(1 + 1/ξ + k) < lim|β|→0 π
S
k(β) = 2/k, k ∈ {1, 2, . . .}, which implies that the contribution of

{πS
k(β)}∞k=0 is more than that of {ψR

k (β)}∞k=0 in the shrinkage of the β. Squared exponential decay

rates of the terms in {πS
k(β)}∞k=0 at |β| → ∞ in (b) implies that the contribution of {πS

k(β)}∞k=0

in controlling the tail of π(β|τ, ξ) is negligible as |β| goes to infinity. Finally, (d) implies the
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marginal prior π(β|τ, ξ) has a systematic mechanism to control the tails, {ψR
k (β)}∞k=0, achieved by

controlling ξ.

We call the sequence of functions {ψR
k (β)}∞k=0 tail lifters as their main roles are to lift the tail

part of the density π(β|τ, ξ) by increasing ξ. The presence of tail lifters in the marginal prior

π(β|τ, ξ) provides a great flexibility to the shape of the density as shown in the panels in Figure 5.

This is particularly useful to handle various sparsity regimes.

In contrast, πHS(β|τ) ((1) in the supplementary material) does not have any tail controlling

mechanism (refer to Corollary 2). This is particularly problematic when τ is estimated to be

very small (say τ = 0.001). Panels in the second row in Figure 5 show a mismatch between the

theoretical support < and numerical support (−ε, ε), ε ≈ 0 of the marginal density πHS(β|τ =

0.001) (1). If τ is extremely small, say, τ = 10−10 (a typical phenomenon in the moderately

sparse regime), then the density πHS(β|τ = 10−10) is numerically approximated by the Dirac-delta

function δ0(β) causing the collapse.

Corollary 5. Let λ|τ, ξ ∼ GPD(τ, ξ), κ = 1/(1 + λ2) ∈ (0, 1), τ > 0, and ξ > 1/2. Then:

(a) limκ→1− π(κ|τ, ξ) =∞ and limκ→0+ π(κ|τ, ξ) =∞.

(b) π(κ|τ = 1, ξ = 1) = {κ−1/2(1− κ)−1/2}/[2 · {κ1/2 + (1− κ)1/2}2].

In the univariate case, the posterior mean of β can be represented as E[β|y] = (1 − E[κ|y])y

with κ = 1/(1+λ2) ∈ (0, 1). Probabilities of the regions (1−ε, 1) and (0, ε), ε ≈ 0 under π(κ|τ, ξ)

are related with the shrinkage and the robustness [9]. The infinite spikes of π(κ|τ, ξ) at k = 0 and

k = 1 imply that the GLT prior has the desired shrinkage property. The density π(κ|τ = 1, ξ = 1)

is not standard, but resembles a ‘horseshoe’.

Figure 6 displays two densities πHS(κ|τ) in (2) of the supplementary materials and π(κ|τ, ξ)

(14), with different values of τ and ξ. When τ = 1, the top panels demonstrate Horseshoe-like

shapes for both πHS(κ|τ = 1) and π(κ|τ = 1, ξ). However, when τ = 0.001, the apparent

difference is shown on the bottom-middle panel, where πHS(κ|τ = 0.001) places essentially zero-

mass on (0, ε), ε ≈ 0. This implies that the robustness property of the Horseshoe is deteriorated
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Figure 5: Comparison between two densities, πHS(β|τ) ((a) in Lemma 1 in the supplementary
material) and π(β|τ, ξ) ((a) in Proposition 3): τ = 1 (top panels) and τ = 0.001 (bottom panels).
The density πHS(β|τ) is colored in black, and densities π(β|τ, ξ) are colored in red (ξ = 1), green
(ξ = 1.5), blue (ξ = 2), and violet (ξ = 3), respectively.
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when τ is very small. On the other hand, the GLT prior π(κ|τ = 0.001, ξ) places positive mass on

(0, ε), ε ≈ 0, and the mass increases as ξ increases. This implies that the robustness property of

the GLT prior is maintained even when τ is very small, and is adjustable by controlling ξ.

6. SIMULATION STUDY

In §4 we discussed how to generate an artificial high-dimensional data (y,X) ∈ <n × <n×p cor-

responding to a simulation settings (n, p, q, %, SNR) from a sparse linear regression (1) when

the truth β0 = (β0,1, · · · , β0,q, β0,q+1, · · · , β0,p)T ∈ <p is specified by β0,1 = · · · = β0,q = 1

and β0,q+1 = · · · = β0,p = 0. Now, we conduct a replicated study to compare the performance

of the Horseshoe and the GLT prior as follows. First, set (n, p) ∈ {(100, 500), (200, 1000)},

s = q/p = 0.01, SNR = 5, and % = 0, and then separately consider the following three scenarios

by varying one environmental value while fixing others; 1) varied sparsity level q/p from 0.001 to

0.1, 2) varied % from 0 to 0.5 and 3) varied SNR from 2 to 10.

We separately report the medians of mean squared errors (MSE) corresponding to signal and

noise coefficients measured across the 50 replicated datasets. Let β̂ = (β̂1, · · · , β̂p)T ∈ <p is

the posterior mean obtained by using either the Horseshoe or the GLT prior: then, MSE corre-

sponding to signals and noises are defined by MSES = (1/q)
∑q

j=1(β̂j − 1)2, MSEN = {1/(p −

q)}∑p
j=q+1(β̂j)

2.Note that when collapse takes place, the posterior mean β̂ numerically becomes

the p-dimensional zero vector. Hence, the two metrics MSES and MSEN numerically become 1 and

0, respectively in that case. The posterior computations for the Horseshoe and the GLT prior are

fully automated and tuning procedures are not required, hence, a fair comparison can be achieved

based on the metrics.

Figure 7 displays the medians of MSES, MSEN, and posterior means of τ and ξ under Sce-

nario 1. The top and bottom panels correspond to (n, p) = (100, 500) and (n, p) = (200, 1000),

respectively. To be specific, the top panel corresponds to the setting (n = 100, p = 500, q,

% = 0, SNR = 5) with q ∈ {1, 6, 11, 16, 22, 27, 32, 37, 43, 48}, and the bottom panel corresponds

to (n = 200, p = 1000, q, % = 0, SNR = 5) with q ∈ {1, 11, 22, 32, 43, 53, 64, 74, 85, 95} so that

the sparsity level q/p varies from 0.001 to 0.1.
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Figure 7: Medians of MSES, MSEN, and posterior means of τ and ξ across different sparsity level
q/p: (n, p) = (100, 500) (top panel) and (n, p) = (200, 1000) (bottom panel). Results from the
GLT prior are marked with black circular dot •; black triangular dot (rightmost panel) represents
the posterior mean of ξ. Results from the Horseshoe are marked with blue square dot. The red
dotted horizontal line represents zeros.

The Horseshoe performs well if the sparsity level q/p is less than 11/500 = 22/1000 = 0.022,

but suddenly collapses beyond this due to a sharp decrease in the posterior mean of τ . On the other

hand, the GLT prior does not collapse and the posterior means of the τ are maintained at around

0.004, and the posterior means of ξ increase as the sparsity level increases to q/p = 0.022.

Figure 8 displays the medians of MSES, MSEN, and posterior means of τ and ξ under Scenario

2. MSES are MSEN obtained from the both priors increase as % increases. The GLT prior shows

better signal detection whereas the Horseshoe shows slightly better noise shrinkage. When (n, p) =

(200, 1000) and % = 0.5 the GLT prior outperforms the Horseshoe as seen on the bottom-middle

panel.

Figure 9 displays the medians of MSES, MSEN, and posterior means of τ and ξ under Scenario

3. MSES are MSEN obtained from the both priors monotonically decreases as the value of SNR

increases. Both priors show excellent performances in shrinkage noises as seen in the middle

panels. When SNR = 2, the GLT prior shows better performance than the Horseshoe as seen in
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Figure 8: Medians of MSES, MSEN, and posterior means of τ and ξ across different sparsity level
q/p: (n, p) = (100, 500) (top panel) and (n, p) = (200, 1000) (bottom panel).
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Figure 9: Medians of MSES, MSEN, and posterior means of τ and ξ across different sparsity level
q/p: (n, p) = (100, 500) (top panel) and (n, p) = (200, 1000) (bottom panel).

21



the left panels.

7. THE GLT PRIOR APPLIED TO THE PROSTATE CANCER DATA

To investigate the performance of the GLT prior on the prostate cancer data in Subsection 3.1

as the number of genes used increases, we constructed seven prostate datasets, P1 = {yj}p=50
j=1 ,

P2 = {yj}p=100
j=1 , P3 = {yj}p=200

j=1 , P4 = {yj}p=500
j=1 , P5 = {yj}p=1000

j=1 , P6 = {yj}p=3000
j=1 , and

P7 = {yj}p=6033
j=1 such that P1 ⊂ P2 ⊂ P3 ⊂ P4 ⊂ P5 ⊂ P6 ⊂ P7, where P7 is the full dataset. In

Subsection 3.1, we showed that the Horseshoe collapses when the number of genes used is 200 or

more, as seen on the right panel of the Figure 1.

The results of posterior inference obtained using the GLT prior are shown on the Figure 10: the

left and the right panels display the ordered pairs {(yj, β̂j)}pj=1, when applied to the four datasets

Pl, l = 1, 2, 3, 4, and the three datasets Pl , l = 5, 6, 7, respectively, where β̂j is the posterior mean

of βj . The reversed-S-shape curves formed by pairs {(yj, β̂j)}pj=1 for all datasets testify to the

robustness property of GLT regardless of how many genes are used. This is primarily due to its

automatic adaptation of the tail-heaviness to the data used. This is a clear advantage of GLT over

the Horseshoe whose tail-heaviness is fixed; refer to Proposition 2.

The posterior means of the shape parameter ξ for the seven datasets are 1.620 (P1), 1.662 (P2),

1.789 (P3), 1.905 (P4), 1.991 (P5), 2.760 (P6), and 3.636 (P7), respectively. This monotonicity ξ

is indicative of the fact that the GLT prior automatically adapts its tail-heaviness to accommodate

more interesting genes as the number of genes used increases.

8. DISCUSSION

The purpose of this article is not to criticize the existing continuous shrinkage priors or Horseshoe

in particular, but is simply to recognize that these priors are devised to produce meaningful results

only in the regime where there are a handful of true signals, the so-called ultra-sparse regime.

However, accompanied by the advancement in modern microarray technique and gene discovery, it

is necessary to devise a sparsity inducing prior which works reasonably well across diverse sparsity

regimes. The proposed GLT prior aims to address this gap in the literature. We also explored
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Figure 10: Posterior inference results obtained by the GLT prior applied seven prostate
cancer datasets Pl, l = 1, · · · , 7. Posterior means of (τ, ξ) corresponding to the seven
datasets are (0.0303, 1.620) (P1), (0.0154, 1.662) (P2), (0.0090, 1.789) (P3), (0.0037, 1.905) (P4),
(0.0019, 1.991) (P5), (0.0013, 2.760) (P6), and (0.0013, 3.636) (P7), respectively.

application of the proposed GLT prior to a curve fitting study; refer to §2 of the supplementary

materials.

We emphasize that delicate care is required to estimate the shape parameter ξ within the global-

local-tail shrinkage framework and we regard this as one of the salient contributions of the paper.

For the GLT prior, we proposed an algorithm which combined the elliptical slice sampler [32]

and the Hill estimator [23] from the extreme value theory which obviates the need for tuning any

hyper-parameters. This automatic-tuning leads to learning the shape parameter ξ adaptive to the

unknown sparsity level. Refer to §5 in the supplementary materials for more details.
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[46] VAN DER PAS, S., SZABÓ, B. & VAN DER VAART, A. (2016). How many needles in the

haystack? adaptive inference and uncertainty quantification for the horseshoe. arXiv preprint

arXiv:1607.01892 .
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1. COLLAPSING BEHAVIOR OF HORSESHOE

1.1 The Horseshoe applied to a breast cancer data

The breast cancer data we use in this article is composed of a response vector and a design matrix,

(y,X) ∈ <n × <n×p, obtained from n = 729 breast cancer patients and p = 3, 250 genes. The

i-th response value yi ∈ <, i = 1, · · · , n, is the log-transformed overall survival (OS) time of

the i-th subject such that all responses {yi}ni=1 were quality assessed, integrated and processed

with the help from disease experts and TCGA Biospecimen Core Resource [17]. Following a

guideline from [17], subjects who have moderately long OS are considered in our study. A detailed

clinical information of the dataset can be found in [17]. The minimum, mean, and maximum of

OS are 84 days, 1, 000 days (2.7 years), and 8, 605 days (23 years), respectively. X is a column-

standardized design matrix such that the ij-th element xij represents an expression levels of the

j-th gene obtained from the i-th subject.

National Cancer Institute (NCI) defines OS as the length of time from either the date of diag-

nosis or the start of treatment for a disease, such as cancer, that patients diagnosed with the disease

are still alive. In a clinical trial, measuring the OS is one way to see how well a new treatment
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works. Therefore, OS is an indirect evidence of measuring about how strong the immune system

of the patients. The histogram of {yi}ni=1 and its Q-Q plot are displayed on the Figure 1. The Q-Q

plot shows small deviation of the responses {yi}ni=1 from normality.
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Figure 1: Histogram of 729 log of overall survival times (left panel) and its Q-Q plot (right panel).

After centering the response vector y to avoid introducing an intercept term, our goal is to esti-

mate β from the sparse high-dimensional linear regression (3). The primary objective of this study

is then to discover two categories of small number of genes that may enhance the immune system

of patients (positive sign of βj) and genes who may undermine the immune system of patients

(negative sign of βj). As before, we use the Horseshoe πHS(β) for β, and Jeffrey’s prior for σ.

Posterior computation is executed by using horseshoe(y = y, X = X, method.tau =

"halfCauchy", method.sigma = "Jeffreys", burn = 10000, nmc = 10000,

thin = 100) where y = y and X = X .

To investigate the behavior of the Horseshoe as the number of genes used increases, we con-

structed four datasets, B1 = (y,X[·, 1 : 500]), B2 = (y,X[·, 1 : 1000]), B3 = (y,X[·, 1 : 2000]),

and B4 = (y,X[·, 1 : 3250] = X), so that they have the same response vector y but the number

of genes used in the design matrix are different; B1, B2, B3, and B4 use 500, 1, 000, 2, 000, and

3, 250 number of genes, respectively. The dataset B4 is the full dataset, and B stands for breast.

Figure 2 displays the stacked histograms of the column-wise correlations obtained from the design
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Figure 2: Stacked histogram of the column-wise correlations of the design matrices from the four
breast cancer datasets, Bl, l = 1, 2, 3, 4, restricted on [−0.6,−0.4] (left panel) and [0.8, 1] (right
panel).

matrices from the four datasets. Left and right histograms are obtained by confining the correla-

tions to intervals [−0.6,−0.4] and [0.8, 1], respectively. We note from Figure 2 that as the number

of genes used increases, the genome-wise correlations get substantially intensified. We report the

results of the posterior inference by displaying the gene ranking plot, where the coefficients in

β = (β1, · · · , βp)T ∈ <p are ranked based on the absolute values of the posterior mean {β̂j}pj=1,

ordered from largest to smallest. Figure 3 displays the top 50 genes obtained by using the Horse-

shoe for each dataset Bl, l = 1, 2, 3, 4. Table 1 summarizes top 10 genes along with their names,

and directions which have been taken from the signs of the posterior means. The results are rea-

sonable for B1 and B2, but collapses when applied to B3 and B4. Based on the Table 1, it turns out

that the genes NGEF and FAM138F are found to be the most significant for the datasets B1 and

B2, respectively, and both genes have negative effects on the response OS. Figure 3 can be used for

uncertainty quantification associated with the coefficients.

1.2 The GLT prior applied to a breast cancer data

The GLT prior is applied to the same four breast cancer data Bl, l = 1, 2, 3, 4, constructed in

Subsection 1.1. Recall that the Horseshoe collapses when applied to Bl, l = 3, 4: see the bottom

panels in the Figure 3. The Figure 4 and the Table 2 show the top 50 gene ranking plots and top 10

interesting genes obtained by using the GLT prior when applied to the four breast cancer datasets.

Table 3 summarizes the top 13 interesting genes selected by the GLT prior when applied to the
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Figure 3: Top 50 genes obtained by the Horseshoe: B1 (top-left panel), B2 (top-right panel), B3
(bottom-left panel), and B4 (bottom-right panel). The dots • and vertical bars represent the pos-
terior means and 95% credible intervals, respectively. The colors blue and red represent plus and
negative signs of posterior mean of βj , respectively. Posterior means of τ corresponding to the
four datasets are 0.10839 (B1), 0.06145 (B2), 3.65 · 10−8 (B3), and 3.19 · 10−9 (B4), respectively.
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Table 1: Top 10 interesting genes selected by the Horseshoe when applied to Bl, l = 1, 2, 3, 4

1 2 3 4 5

B1 NGEF(−) PLN(−) C3orf59(+) C21orf63(+) LOC100130331(−)
B2 FAM138F(−) SLC39A4(−) PLN(−) NGEF(−) PCGF5(+)
B3 NA NA NA NA NA
B4 NA NA NA NA NA

6 7 8 9 10

B1 FCGR2A(−) HES4(+) BCAP31(−) GSTM1(+) TOB2(−)
B2 HES4(+) FCGR2A(−) FCGR2C(−) TOB2(−) BCAP31(−)
B3 NA NA NA NA NA
B4 NA NA NA NA NA

NOTE: Contents of table is (gene name, direction). Genes with positive sign (+) may enhance the
immune system of patients: however, genes with minus (−) may damage the immune system of
patients. When the Horseshoe is applied to the datasets B3 and B4, genes are unranked because the
horseshoe estimator collapsed.

Table 2: Top 10 interesting genes selected by the GLT prior when applied to Bl, l = 1, 2, 3, 4

1 2 3 4 5

B1 NGEF(−) C21orf63(+) PLN(−) C3orf59(+) FCGR2A(−)
B2 FAM138F(−) SLC39A4(−) NGEF(−) PCGF5(+) PLN(−)
B3 FAM138F(−) SLC39A4(−) NGEF(−) PLN(−) COL7A1(−)
B4 FAM138F(−) NSUN4(−) COL7A1(−) LOC150776(+) NGEF(−)

6 7 8 9 10

B1 BCAP31(−) GSTM1(+) LOC100130331(−) TOB2(−) ABCA17P(+)
B2 FCGR2A(−) CRHR1(+) TOB2(−) GSTM1(+) LOC150776(+)
B3 CRHR1(+) FCGR2A(−) RPLP1(+) HES4(+) TOB2(−)
B4 SMCHD1(+) RPLP1(+) HES4(+) SLC37A2(−) SLC39A4(−)

full breast cancer dataset B4, and some references from the literature on oncology and genetics.

The GLT prior discovered LOC150776 that has been less studied in the literature. As the direc-

tion of LOC150776 is positive (+), an over expression of LOC150776 may enhance the immune

system of breast cancer patients. Interestingly, the GLT prior identified the famous superman gene

BHLHE41: it is known that the genetic variant of BHLHE41 provides a greater resistance to the

effects of sleep deprivation, possibly enhancing the immune system [24].

5



−8

−4

0

4

8

gene rank [j]

9
5

%
 c

re
d

ib
le

 i
n

te
rv

a
l 
o

f 
β [

j]

−8

−4

0

4

8

gene rank [j]

9
5

%
 c

re
d

ib
le

 i
n

te
rv

a
l 
o

f 
β [

j]
−8

−4

0

4

8

gene rank [j]

9
5

%
 c

re
d

ib
le

 i
n

te
rv

a
l 
o

f 
β [

j]

−8

−4

0

4

8

gene rank [j]
9

5
%

 c
re

d
ib

le
 i
n

te
rv

a
l 
o

f 
β [

j]

Figure 4: Top 50 gene ranking plots obtained by the GLT prior: B1 (top-left panel), B2 (top-right
panel), B3 (bottom-left panel), and B4 (bottom-right panel). Posterior means of (τ, ξ) correspond-
ing to the four datasets are (0.00436, 2.188) (B1), (0.00221, 2.230) (B2), (0.00135, 2.382) (B3), and
(0.00135, 2.922) (B4), respectively.

2. CURVE FITTING STUDY

2.1 Simulated curves

Consider two functions f on domain D from what data is generated: the sinc curve f(x) =

sinc(x) = (sin x)/x on D = (−20, 20), and a flat curve f(x) = (5x − 3)3 · I(x > 3/5) on

D = (0, 1). We uniformly sampled n-inputs {xi}ni=1 from domain D, and let yi = f(xi) + σ0εi,

εi ∼ N1(0, 1), i = 1, · · · , n, with σ0 = 0.15, to generate n-pair {(yi, xi)}ni=1.

To estimate f given the n-pair {(yi, xi)}ni=1 the sparse Gaussian kernel regression [4, 28] is used

as: yi = fn(xi) + σεi, εi ∼ N1(0, 1), i = 1, · · · , n, such that fn(·) = α +
∑n

j=1 βjK(·, xj),

α ∈ <, and β = (β1, · · · , βn)T ∈ <n is sparse, with the Gaussian kernel for K [4]. We use the flat

prior for α [18], and the Jeffrey’s prior for σ. Sparsity on β is imposed by the Horseshoe or the

GLT prior. For each test curve, we generated n = 100 pairs, and report the median of all average

mean squared error (AMSE) [32] across 100 replicated pairs {(yi, xi)}n=100
i=1 . AMSE is defined

by
∑n

i=1{f̂n(xi) − f(xi))}2/n, where f̂n(x) = E[α +
∑n

j=1 βjK(x, xj)|y] is a posterior mean of

6



Table 3: Top 13 interesting genes selected by the GLT prior when applied to B4
Rank Gene (direction) Note References
1 FAM138F(−) Increasing a risk of breast and ovarian cancer [11, 27]
2 NSUN4(−) Related with ovarian and prostate cancer [15]
3 COL7A1(−) Related with cell migration (metastasis) [33]
4 LOC150776(+) Less studied in oncology and genetics
5 NGEF(−) Related with obesity-related diseases [31]
6 SMCHD1(+) Important in regulation [14]
7 RPLP1(+) Important in protein synthesis [9]
8 HES4(+) Gene knockdown increases a brain disease [1]
9 SLC37A2(−) Negatively related with survival probability
10 SLC39A4(−) Negatively related with survival probability [14]
11 MFRP(−) Related with ovarian cancer
12 ARSA(+) Positively related with survival probability
13 BHLHE41(+) High recovery from fatigue or short sleep [24]

fn(x) at x.

For the sinc test curve, the median AMSE obtained by the Horseshoe and the GLT priors are

0.00393 and 0.00385, respectively. For the flat test curve, the median of AMSE obtained by using

the Horseshoe and the GLT prior are 0.00490 and 0.00382, respectively. See Figure 5 for one of

the 100 replicates.

2.2 Real curves

The sparse Gaussian kernel regression is applied to four example curves: circadian rhythm curve

of gene expression of PER2 from colon tissue, light-curve from an eclipsing binary star system,

fossil data, and LIDAR data. The number of observations for the four data are 100, 377, 106,

and 221, respectively. The circadian rhythm data and light-curve data can be obtained from the

website http://circadb.hogeneschlab.org and https://www.eso.org, respectively. The fossil data and

the LIDAR data can be downloaded from R package SemiPar. See Figure 6 for the results: the

results are virtually indistinguishable.
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Figure 5: Two simulated curves fitted by the sparse Gaussian kernel regression. The red dot and
red dotted curve represent observation and the truth f . The black curve and blue dotted curve
represent the posterior mean of fn(x) at x obtained by using the GLT prior and the Horseshoe,
respectively. The shaded region depicts the pointwise 95% credible interval obtained by using the
GLT prior.
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Figure 6: Four real curves fitted by the sparse Gaussian kernel regression.
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3. ADDITIONAL PROPERTIES OF THE HORSESHOE AND GLT PRIOR

3.1 Marginal density of Horseshoe

Lemma 1 (Marginal density of Horseshoe).

(a) Assume β|λ, τ ∼ N1(0, τ
2λ2), λ ∼ C+(0, 1), and τ > 0. Then:

πHS(β|τ) =

∫
N1(β|0, τ 2λ2)π(λ)dλ = KHSe

ZHS(β)E1{ZHS(β)}, (1)

where KHS = 1/(τ21/2π3/2) and ZHS(β) = β2/(2τ 2). E1(x) =
∫∞
1
e−xtt−1dt, x ∈ <, is the

exponential integral function.

(b) Assume λ ∼ C+(0, 1), κ = 1/(1 + τ 2λ2) ∈ (0, 1), and τ > 0. Then:

πHS(κ|τ) =
τ

π
· κ
−1/2(1− κ)−1/2

1− (1− τ 2)κ . (2)

3.2 The GLT prior for high-dimensional linear regression

Consider a high-dimensional linear regression

y = Xβ + σε, ε ∼ Nn(0, In) and β is sparse, (3)

where X is a n-by-p design matrix (n � p or n ≈ p with both n and p are large). The goal is to

recover the p-dimensional coefficients vector β = (β1, · · · , βp)T in a fully Bayesian way.

In the main paper, we proposed the GLT prior for the parameter β, πGLT(β), whose hierarchical

formulation is given by:

βj|λj, σ2 ∼ N1(0, λ
2
jσ

2), σ2 ∼ π(σ2) ∝ 1/σ2, (j = 1, · · · , p), (4)

λj|τ, ξ ∼ GPD(τ, ξ), (j = 1, · · · , p), (5)

τ |ξ ∼ IG(p/ξ + 1, 1), (6)

ξ ∼ log N (µ, ρ2)I(1/2,∞), µ ∈ <, ρ2 > 0. (7)

9



Note that µ and ρ2 are hyper-parameters which typically require an expert-tuning. In this

Supplementary material, we provide a full description of a posterior computation using the GLT

prior under the high-dimensional linear regression. Eventually, the proposed posterior computation

does NOT require any tuning procedure for the hyper-parameters, and the shape parameter ξ is

adaptively learned based on the sparsity level associated with the given data (y,X).

3.3 Learnability of the shape parameter ξ using the GLT prior

Since the shape parameter ξ is the furthest from the data y within the hierarchy, it is important to

check properness of the posterior distribution of ξ, π(ξ|y) ∝ f(y|ξ) · π(ξ). For that, one should

prove that the evidence (marginal likelihood)m(y) =
∫
f(y|ξ)·π(ξ)dξ =

∫ ∫ ∫ ∫ ∫
π(y, β, σ2, λ, τ, ξ)

dβdσ2dλdτdξ is finite for all values y ∈ <n, which is not trivial. Instead, we demonstrate proper-

nesses of two posterior densities: (a) the full conditional posterior distribution π(ξ|−) = π(ξ|λ, τ)

from the hierarchy of the GLT prior, and (b) the posterior distribution π(ξ|y, β, τ, λ) under a uni-

variate hierarchy without covariates:

Lemma 2. (Learnability of ξ using the GLT prior)

(a) Assume β ∼ πGLT(β) (4) – (7). Then proportional part of full conditional posterior for ξ is

represented as:

π(ξ|−) ∝ Vp(ξ) · log N1(ξ|µ, ρ2) · I(1/2,∞)(ξ), Vp(ξ) =
πp/2

Γ(p/ξ + 1)

p∏

j=1

rj(ξ), (8)

where {rj(ξ)}pj=1 = (τ + ξλj)
−(1/ξ+1) and π(ξ|−) is proper on (1/2,∞). Here, V stands

for volume.

(b) Assume y|β ∼ N1(β, 1), β|λ ∼ N1(0, λ
2), λ|τ, ξ ∼ GPD(τ, ξ), τ |ξ ∼ IG(1/ξ + 1, 1).

Let π(ξ) be any proper density of ξ supported on (1/2,∞), i.e.,
∫∞
1/2
π(ξ)dξ = 1. Then

π(ξ|y, β, τ, λ) is proper on (1/2,∞).

Interestingly, the likelihood part of the full conditional posterior density π(ξ|−) (8) has a nice
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geometric interpretation: if ξ = 2 then the value of Vp(2) of the density is the volume of a p-

dimensional ellipsoid with p-radii {rj(2) = (τ + 2λj)
−(3/2)}pj=1.

4. SIMULATION STUDIES WITH VARIANTS OF THE HORSESHOE

We conducted replicated study under the high-dimensional regression (3) with n = 100 and p =

500. Simulation environments are coincided with the three scenarios described in the Section 6

in the main paper. (Each of the scenario 1, 2, and 3 vary sparsity level, correlation % associated

with design matrix, and signal-to-noise (SNR) ratio, while other simulation setting fixed.) Here,

we additionally investigate three variant versions [3, 25, 29] of the Horseshoe along with the main

target Horseshoe [5]:

Truncated horseshoe [29].

βj|λj, τ, σ2 ∼ N1(0, λ
2
jτ

2σ2), λj ∼ C+(0, 1), τ ∼ T C+(0, 1)(1/p,∞), (j = 1, · · · , p).

The T C+(0, 1)(1/p,∞) is the unit-scaled half-Cauchy distribution truncated from below by 1/p. The

R function horseshoe within the R package horseshoe provides an option to use this setting

by specifying method.tau = "truncatedCauchy".

Horseshoe-plus [3].

βj|λj, σ2 ∼ N1(0, λ
2
jσ

2), λj|ηj, τ ∼ C+(0, ηjτ), ηj, τ ∼ C+(0, 1), (j = 1, · · · , p).

Note that the Horseshoe-plus is characterized by a further half-Cauchy mixing variable ηj embed-

ded to the local-scales λj .

Regularized horseshoe [25].

βj|λ̃j, τ ∼ N1(0, τ
2λ̃2j), λ̃2j =

c2λ2j
c2 + τ 2λ2j

, (j = 1, · · · , p),

λj, τ ∼ C+(0, 1), c2 ∼ IG(ν/2, νs2/2), (j = 1, · · · , p),
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where ν, s2 > 0 are hyper-parameters: we shall simply fix them to be 1.

For evaluation criteria, given that the truth β0 = (β0,1, · · · , β0,q, β0,q+1, · · · , β0,p)T is specified

by β0,1 = · · · = β0,q = 1 (q unit signals) and β0,q+1 = · · · = β0,p = 0 (p− q noises), we separately

report median of the following quantities obtained by 50 replicates:

MSE =
1

p

p∑

j=1

(β̂j − β0,j)2 , MSES =
1

q

q∑

j=1

(β̂j − 1)2, and MSEN =
1

p− q

p∑

j=q+1

(β̂j)
2.

The MSE measures overall accuracy of estimation for the coefficients induced by a prior, which

can be dissected by two components: (1) MSE for signal part (MSES) measuring signal recovery

ability and (2) MSE for noise parts (MSEN) measuring noise shrinking ability. We emphasize that

when collapse takes place (that is, the posterior means β̂j are nearly zeros), then MSES and MSEN

will be close to 1 and 0, respectively. in this circumstance, the total MSE is not a reasonable

evaluation criteria.

Figure 7 displays the simulation results: scenario 1 (top three panels); scenario 2 (middle three

panels); and scenario 3 (bottom three panels). The followings are summaries based on the results:

1. Under the scenario 1, we see that the truncated horseshoe prior [30] suffers from the similar

collapse observed in the Horseshoe [5] when sparsity level is larger than certain threshold.

The total does not bring out this phenomenon.

2. Under the scenario 1 with ultra sparsity regime (where the sparsity level q/p is between

0.002 and 0.024), all considered prior performs reasonably well, while the signal recovery

ability of the GLT prior is marginally getting better as the sparsity level increases.

3. Under the scenario 1 with moderate sparsity regime (where the sparsity level q/p is between

0.034 and 0.1), (i) the regularized horseshoe [25] outperforms others in terms of MSES,

while (ii) the GLT prior outperforms others in terms of MSEN.

4. Under the scenario 2, the Horseshoe [5] and the truncated horseshoe [30] outperform other

priors in terms of MSE, while the GLT prior outperforms in terms of MSES.

12



5. Under the scenario 3, the Horseshoe [5] and the truncated horseshoe [30] outperform other

priors in terms of MSE, while the GLT prior outperforms in terms of MSES when SNR is 2.
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Figure 7: Simulation results under the three scenarios: scenario 1 (top panels); scenario 2 (middle
panels); and scenario 3 (bottom panels). Metrics measured are MSE (left panels), MSES (center
panels), and MSEN (right panels).
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5. POSTERIOR COMPUTATION

In this section, we details several aspects of the posterior computation using GLT prior.

5.1 Gibbs sampler

Consider y = Xβ + σ2ε , ε ∼ Nn(0, In) (3), σ2 ∼ π(σ2) ∝ 1/σ2, and β ∼ πGLT(β) (4) – (7).

The posterior distribution of unknown parameters Ω = (β, σ2, λ, τ, ξ) ∈ <p× (0,∞)× (0,∞)p×
(0,∞) × (1/2,∞) is obtained in the following. The full joint posterior distribution, π(Ω|y), is

proportional to

Nn(y|Xβ, σ2In)Np(β|0, σ2Λ)π(σ2)

{ p∏

j=1

π(λj |τ, ξ)
}
π(τ, ξ), Λ = diag(λ21, · · · , λ2p) ∈ <p×p

∝ Nn(y|Xβ, σ2In)Np(β|0, σ2Λ)π(σ2)

{ p∏

j=1

GPD(λj |τ, ξ)
}
IG(τ |p/ξ + 1, 1) log N (ξ|µ, ρ2)I(1/2,∞)(ξ).

Since full joint posterior distribution π(Ω|y) is not in a closed form, we develop a Markov chain

Monte Carlo to simulate Ω from this full joint posterior distribution. The following algorithm

provides a Gibbs sampler which utilizes the conditional independence structure in the hierarchical

formation.

Step 1. Sample β from conditional posterior

π(β|−) ∼ Np(ΣXTy, σ2Σ), Σ = (XTX + Λ−1)−1 ∈ <p×p.

Step 2. Sample σ2 from conditional posterior

π(σ2|−) ∼ IG
(
n+ p

2
,
‖y −Xβ‖22 + βTΛ−1β

2

)
.

Step 3. Update λj , j = 1, · · · , p, independently using slice sampler [22] within the Gibbs

sampler. Proportional part of full conditional posterior is

π(λj|−) ∝ 1

λj
exp

(
− β2

j

2σ2λ2j

)
·
(

1 +
ξλj
τ

)−(1/ξ+1)

. (9)
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Step 4. Update τ using slice sampler [22] within the Gibbs sampler. Proportional part of

full conditional posterior is

π(τ |−) ∝ τ−2 exp(−1/τ) ·
p∏

j=1

(τ + ξλj)
−(1/ξ+1). (10)

Step 5. Update ξ using elliptical slice sampler [21] after variable change η = log ξ within

the Gibbs sampler. Proportional part of full conditional posterior is

π(ξ|−) ∝ Vp(ξ) · log N1(ξ|µ, ρ2) · I(1/2,∞)(ξ), (11)

where Vp(ξ) = {Γ(p/ξ+1)}−1πp/2∏p
j=1 rj(ξ) with rj(ξ) = (τ+ξλj)

−(1/ξ+1), j = 1, · · · , p.

5.2 Slice sampler implementation in Step 3 and Step 4

Slice sampler [22] is a popular technique to adapt the step-size of a MCMC algorithm and is based

on the local property of the target density. The basic idea is parameter expansion which involves

intentional introduction of auxiliary variables [7]. Finding an appropriate parameter expansion

depends on the functional form of the target density.

Let j ∈ {1, · · · , p}. To implement the slice sampler in the Step 3 (9), first use change of

variable, γj = λ2j , to get

π(γj|−) ∝ γ−1j exp (−mj/γj) · (τ + ξ
√
γj)
−(1/ξ+1)

= γ−1j exp (−mj/γj) · (
√
γj)
−(1/ξ+1)(

√
γj)

(1/ξ+1) · (τ + ξ
√
γj)
−(1/ξ+1)

= γ
−(1/ξ+1)/2−1
j exp (−mj/γj) · (ξ + τ · γ−1/2j )−(1/ξ+1)

∝ IG{γj|(1/ξ + 1)/2,mj} · g(γj), (12)

where mj = β2
j /(2σ

2) and g(γj) = (ξ + τ · γ−1/2j )−(1/ξ+1). Note that the function uj = g(γj)

is increasing on (0,∞), and its inverse function is γj = g−1(uj) = [τ/{u−(ξ/(1+ξ))j − ξ}]2. Now,

consider a density, π(γj, uj|−) ∝ IG{γj|(1/ξ + 1)/2,mj} · I(0,g(γj))(uj). Then we can show that
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∫
π(γj, uj|−)duj = π(γj|−), which means that π(γj, uj|−) is a valid parameter expansion of (12).

Actual sampling is executed on π(γj, uj|−) using the Gibbs sampler: (i) uj|γj,− ∼ π(uj|γj,−) =

U(0, g(γj)) and (ii) γj|uj,− ∼ π(γj|uj,−) = IG{γj|(1/ξ+ 1)/2,mj} · I(g−1(uj),∞)(γj). After the

Gibbs sampling, transform back to λj =
√
γj .

To implement the slice sampler in the Step 4, note from (10):

π(τ |−) ∝ IG(τ |1, 1) ·
p∏

j=1

gj(τ), (13)

where gj(τ) = (τ + ξλj)
−(1/ξ+1), j = 1, · · · , p. Note that p-functions vj = gj(τ), j = 1, · · · , p,

are decreasing on (0,∞), and their inverse functions are τ = g−1j (vj) = v
−(ξ/(1+ξ))
j − ξλj , j =

1, · · · , p. Now, consider a density: π(τ, v1, · · · , vp|−) ∝ IG(τ |1, 1) · ∏p
j=1 I(0,gj(τ))(vj). Then

we have
∫
· · ·
∫
π(τ, v1, · · · , vp|−)dv1 · · · dvp = π(τ |−) and hence π(τ, v1, · · · , vp|−) is a valid

parameter expansion of (13). Actual sampling is executed on π(τ, v1, · · · , vp|−) using the Gibbs

sampler:

vj|τ, v−j,− ∼ π(vj|τ, v−j,−) = U(0, gj(τ)), (j = 1, · · · , p), (14)

τ |v1, · · · , vp,− ∼ IG(τ |1, 1) · I(0,min{g−1
1 (v1),··· ,g−1

p (vp)})(τ),

where in (14), v−j represents the collection of {vj}pj=1 except for vj . Note also that each full

conditional posterior distribution π(vj|τ, v−j,−), j = 1, · · · , p, does not depend on v−j , i.e.,

π(vj|τ, v−j,−) = π(vj|τ,−) and hence it is possible to parallelize the update of {vj}pj=1.

5.3 Summary of the Hill estimator

We briefly explain the Hill estimator which plays a central role in hyper-parameter specification

of µ. For notational coherence, we use the Greek letter λ to describe a random quantity. Suppose

λ = (λ1, · · · , λp)T ∈ (0,∞)p is p-dimensional random variables from a strongly stationary process

whose marginal distribution is F such that its tail distribution is regularly varying with the tail-

index 1/ξ (hence, the corresponding shape parameter is ξ). To be specific, the tail distribution is
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described as F̄ (λ) = 1−F (λ) = L(λ) ·λ−1/ξ for some ξ > 0 where L is a slowly varying function

[8, 26]. Denote its order statistics by λ(1) ≥ · · · ≥ λ(p). Then the Hill estimator [12] is based on k

upper order statistics:

ξ̂k(λ) =
1

k − 1

k−1∑

j=1

log

(
λ(j)
λ(k)

)
, for 2 ≤ k ≤ p. (15)

It is known that the Hill estimator (15) is a consistent estimator for ξ, i.e., ξ̂k(λ) → ξ in

probability, if p → ∞, k → ∞, and k/p → 0 [8, 10, 26]. Empirically it is known that the Hill

estimator may work effectively when F is of Pareto type [8, 16]. (See Fig 1 in [8].)

Suppose we have p number of observations λ, possibly generated from the above distribution F .

In practice, the Hill estimator is used as follows. First, calculate the estimator ξ̂k(λ) at each integer

k ∈ {2, · · · , p}, and then plot the ordered pairs {(k, ξ̂k(λ))}pk=2: the resulting plot is called the Hill

plot (See the Figure 6.4.3 of [10]). Then, select from the set of Hill estimators {ξ̂k(λ)}pk=2 which

are stable (roughly constant) with respect to k: then, the stable value(s) are regarded as reasonable

estimate(s) for the shape parameter ξ [8]. Typically, the Hill plot may display high variability when

k is close to 2 or p. As a practical remedy, one may disregard the first or last few of the estimates:

the values ξ̂k(λ) that are evaluated at integers k ∈ {kL, · · · , kU}, 2 < kL < kU < p, are considered

to be monitored where the integers kL and kU are decided by user.

5.4 Hyper-parameter specification of µ and ρ2

Suppose we are at the Step 5 of the s-th iteration of the Gibbs sampler described in Subsection

5.1. At this moment, we already acquired posterior realizations, λ(s+1) = (λ
(s+1)
1 , · · · , λ(s+1)

p )T

and τ (s+1), that are sampled from the previous steps, Step 3 and Step 4, respectively. Treating the

indicator I(1/2,∞)(ξ) in (11) as a part of likelihood, consider sampling ξ(s+1) from the density;

ξ(s+1) ∼ π(ξ|−) = π(ξ|λ(s+1), τ (s+1)) ∝ L(ξ) · log N1(ξ|µ, ρ2), (16)
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where L(ξ) = Vp(ξ)I(1/2,∞)(ξ). Henceforth, the basic idea is to strictly obey the philosophy of

Gibbs sampler: as long as we are to sample ξ(s+1) ∼ π(ξ|−), every latent variables except for ξ

are treated as observed variables, including λ(s+1) and τ (s+1).

To start with, we choose a small value of the hyper-parameter ρ2 so that the prior π(ξ) =

log N1(ξ|µ, ρ2) in (16) is highly concentrated around its prior mean E[ξ] = exp (µ + ρ2/2) ≈

exp (µ). Hence, a future state ξ(s+1) is highly probable to be sampled around the value exp (µ):

then, an approximate relationship between ξ(s+1) and µ is derived, ξ(s+1) ≈ exp (µ), or equiv-

alently, µ ≈ log ξ(s+1), which will be utilized shortly later. Throughout this paper, we use

ρ2 = 0.001 as the default value for ρ2.

Now, we describe how to calibrate µ by using the Hill estimator (15). We start with ordered

realizations of λ(s+1) = (λ
(s+1)
1 , · · · , λ(s+1)

p )T by λ(s+1)
(1) ≥ · · · ≥ λ

(s+1)
(p) . The Hill estimator based

on λ(s+1) is then

ξ̂k(λ
(s+1)) =

1

k − 1

k−1∑

j=1

log

(
λ
(s+1)
(j)

λ
(s+1)
(k)

)
, for kL ≤ k ≤ kU, (17)

where kL = bp/10c and kU = b9p/10c, with b·c is the floor function. In high-dimensional statis-

tical modeling, the cardinality of the set {kL, · · · , kU} = {bp/10c, · · · , b9p/10c} ⊂ {2, · · · , p} is

still large, approximately, b4p/5c, enough to maintain the consistency of the Hill estimator. Note

that estimates in (17) depend on k, which needs to be automated. To eliminate dependency on k,

first, we average out the Hill estimators (17) over k, and then use the relation µ ≈ log ξ(s+1), to

get:

µ̂(λ(s+1)) = log {ξ̂(λ(s+1))} = log

{
1

kU − kL + 1

kU∑

k=kL

ξ̂k(λ
(s+1))

}
. (18)

Note that µ̂(λ(s+1)) changes at each iteration of the Gibbs sampler, and tuned by λ(s+1) through

the Hill estimator. In other words, µ̂(λ(s+1)) can be regarded as a calibrated hyper-parameter

adapted via the p-realizations λ(s+1). By replacing µ with µ̂(λ(s+1)) and substituting ρ2 = 0.001 in

the full conditional posterior density π(ξ|−) (16), the Gibbs sampler is now automated.
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Finally, we explain how to sample from the density π(ξ|−) (16). For that, first, use a change

of variable η = log ξ and sample from

η(s+1) ∼ π(η|−) = π(η|λ(s+1), τ (s+1)) ∝ L(η) · N1(η|µ̂(λ(s+1)), ρ2 = 0.001), (19)

where L(η) = Vp(eη)I(log 1/2,∞)(η) = [{Γ(p/eη + 1)}−1πp/2∏p
j=1(τ

(s+1) + eηλ
(s+1)
j )−(1/e

η+1)]

I(log 1/2,∞)(η). Once we obtain a sample η(s+1) ∼ π(η|−), then ξ(s+1) ∼ π(ξ|−) is obtained via

the inverse transformation through ξ(s+1) = exp η(s+1).

We use the elliptical slice sampler (ESS) [21] to sample from η(s+1) ∼ π(η|−) (19) that exploits

the Gaussian prior measure. Conceptually, ESS and the Metropolis-Hastings (MH) algorithm are

similar: both methods are comprised of two steps: proposal step and criterion step. A difference

between the two algorithms arises in the criterion step. If the new candidate does not pass the

criterion, then MH takes the current state as the next state: whereas, ESS re-proposes a new candi-

date until rejection does not take place, rendering the algorithm rejection-free. Further information

for ESS is referred to the original paper [21]. Using a jargon from their paper, the calibrated µ,

µ̂(λ(s+1)), is positioned at the center of an ellipse [21, 23]. Hence we refer to Algorithm 1 for the

Step 5 as the elliptical slice sampler centered by the Hill estimator.
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Algorithm 1: Elliptical slice sampler centered by the Hill estimator
Circumstance : At the Step 5 of the s-th iteration of the Gibbs sampler in Subsection 5.1.
Input : Current state ξ(s), and posterior realizations λ(s+1) and τ (s+1) obtained from the
Step 3 and Step 4, respectively.

Output : A new state ξ(s+1).
1. Calibration of µ: obtain µ̂(λ(s+1)) = log {ξ̂(λ(s+1))} (18) .
2. Variable change (η = log ξ): η(s) = log ξ(s).
3. Implement elliptical slice sampler to (19);

a. Choose ellipse centered by the Hill estimator: ν ∼ N1(µ̂(λ(s+1)), ρ2 = 0.001).

b. Define a criterion function:

α(η, η(s)) = min{L(η)/L(η(s)), 1} : (log 1/2,∞)→ [0, 1],

where L(η) = [{Γ(p/eη + 1)}−1πp/2∏p
j=1(τ

(s+1) + eηλ
(s+1)
j )−(1/e

η+1)] · I(log 1/2,∞)(η).

c. Choose a threshold and fix: u ∼ U [0, 1].

d. Draw an initial proposal η∗:

θ ∼ U(−π, π]

η∗ = {η(s) − µ̂(λ(s+1))} cos θ + {ν − µ̂(λ(s+1))} sin θ + µ̂(λ(s+1))

e. if ( u < α(η∗, η(s)) ) { η(s+1) = η∗ } else {
Define a bracket : (θmin, θmax] = (−π, π].
while ( u ≥ α(η∗, η(s)) ) {

Shrink the bracket and try a new point :
if ( θ > 0 ) θmax = θ else θmin = θ
θ ∼ U(θmin, θmax]
η∗ = {η(s) − µ̂(λ(s+1))} cos θ + {ν − µ̂(λ(s+1))} sin θ + µ̂(λ(s+1))
}
η(s+1) = η∗

}

4. Variable change (ξ = eη): ξ(s+1) = exp η(s+1).
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6. PROOF OF LEMMA 2

(a) Under the formulation (4) – (7), i.e., β ∼ πGLT(β), we have

π(ξ|−) ∝
{ p∏

j=1

GPD(λj|τ, ξ)
}
· IG(τ |p/ξ + 1, 1) · log N1(ξ|µ, ρ2) · I(1/2,∞)(ξ)

=

{ p∏

j=1

1

τ

(
1 +

ξλj
τ

)−(1/ξ+1)}
· τ
−p/ξ−2e−1/τ

Γ(p/ξ + 1)
· log N1(ξ|µ, ρ2) · I(1/2,∞)(ξ)

∝
{
τ p/ξ ·

p∏

j=1

(τ + ξλj)
−(1/ξ+1)

}
· τ−p/ξ−2

Γ(p/ξ + 1)
· log N1(ξ|µ, ρ2) · I(1/2,∞)(ξ)

∝ πp/2

Γ(p/ξ + 1)

p∏

j=1

(τ + ξλj)
−(1/ξ+1) · log N1(ξ|µ, ρ2) · I(1/2,∞)(ξ).

Now, our goal is to show

m(λ, τ) =

∫ ∞

1/2

πp/2

Γ(p/ξ + 1)

p∏

j=1

(τ + ξλj)
−(1/ξ+1) · log N1(ξ|µ, ρ2)dξ <∞, λ ∈ (0,∞)p, τ ∈ (0,∞).

Let x = 1/ξ. Then

m(λ, τ) =

∫ 0

2

πp/2

Γ(px+ 1)

p∏

j=1

(
x

λj + τx

)x+1

· log N1(1/x|µ, ρ2) · −
1

x2
dx

= πp/2 ·
∫ 2

0

(1/τ)p(x+1)

Γ(px+ 1)

p∏

j=1

(
τx

λj + τx

)x+1

· log N1(1/x|µ, ρ2) ·
1

x2
dx

≤ πp/2 ·
∫ 2

0

r(x) · log N1(1/x|µ, ρ2) ·
1

x2
dx, (20)

where r(x) = (1/τ)p(x+1)/Γ(px + 1). Since r(x) is continuous on a closed interval [0, 2], there

exists x0 ∈ [0, 2] such that r(x0) = supx∈[0,2] r(x) = B. Using this bound B to (20), we have

m(λ, τ) ≤ πp/2 ·B ·
∫ 2

0

log N1(1/x|µ, ρ2) ·
1

x2
dx

≤ πp/2 ·B ·
∫ ∞

0

log N1(1/x|µ, ρ2) ·
1

x2
dx = πp/2 ·B <∞, λ ∈ (0,∞)p, τ ∈ (0,∞).
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(b) Start with a likelihood part:

f(y|ξ) =

∫ ∞

0

∫ ∞

0

∫ ∞

−∞
N1(y|β, 1) · N1(β|0, λ2) · GPD(λ|τ, ξ) · IG(1/ξ + 1, 1)dβdλdτ

=

∫ ∞

0

∫ ∞

0

N1(y|0, 1 + λ2) · GPD(λ|τ, ξ) · IG(τ |1/ξ + 1, 1)dλdτ

=
1√
2π

∫ ∞

0

(∫ ∞

0

1√
1 + λ2

· exp

{
− y2

2(1 + λ2)

}
· 1

τ

(
1 +

ξλ

τ

)−(1/ξ+1)

dλ

)
· IG(τ |1/ξ + 1, 1)dτ

≤ 1√
2π

∫ ∞

0

(∫ ∞

0

1√
1 + λ2

· exp

{
− y2

2(1 + λ2)

}
· 1

τ + ξλ
dλ

)
· IG(τ |1/ξ + 1, 1)dτ

=
1√
2π

∫ ∞

0

(∫ 1

0

g(y, λ, τ, ξ)dλ+

∫ ∞

1

g(y, λ, τ, ξ)dλ

)
· IG(τ |1/ξ + 1, 1)dτ, (21)

where g(y, λ, τ, ξ) = {1/
√

1 + λ2} · exp [−y2/{2(1 + λ2)}] · {1/(τ + ξλ)}, y ∈ < and λ, τ > 0.

Because g(y, λ, τ, ξ) is continuous on a closed interval [0, 1] as a function of λ, by mean value

theorem for integral [2], there exists c ∈ (0, 1) such that

∫ 1

0

g(y, λ, τ, ξ)dλ = g(y, c, τ, ξ) =
1√

1 + c2
· exp

{
− y2

2(1 + c2)

}
· 1

τ + ξc

≤
[

1√
1 + c2

exp

{
− y2

2(1 + c2)

}]
· 1

τ
= A · 1

τ
≤ 1

τ
, τ ∈ (0,∞), (22)

where A = A(y, c) = {1/(
√

1 + c2)} · exp [−y2/{2(1 + c2)}], which is upper bounded by 1 on

<× (0, 1). Also, we have

∫ ∞

1

g(y, λ, τ, ξ)dλ =

∫ ∞

1

1√
1 + λ2

· exp

{
− y2

2(1 + λ2)

}
· 1

τ + ξλ
dλ

≤
∫ ∞

1

1

λ
· 1 · 1

ξλ
dλ =

∫ ∞

1

1

λ2
dλ · 1

ξ
=

1

ξ
, ξ ∈ (1/2,∞). (23)

Using the upper bounds (22) and (23) to (21), then we have

f(y|ξ) ≤ 1√
2π

∫ ∞

0

(
1

τ
+

1

ξ

)
· IG(τ |1/ξ + 1, 1)dτ =

1√
2π

(∫ ∞

0

1

τ
· IG(τ |1/ξ + 1, 1)dτ +

1

ξ

)

=
1√
2π

{(
1

ξ
+ 1

)
+

1

ξ

}
=

1√
2π

(
2

ξ
+ 1

)
≤ 5√

2π
<∞, y ∈ <, ξ ∈ (1/2,∞).
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Therefore, trivially for any proper prior π(ξ) on (1/2,∞), we have

m(y) =

∫ ∞

1/2

f(y|ξ) · π(ξ)dξ ≤ 5√
2π

∫ ∞

1/2

π(ξ)dξ =
5√
2π

<∞, y ∈ <.

7. PROOF OF PROPOSITION 2

Function exE1(x) satisfies tight upper and lower bounds [5];

1

2
· log

(
x+ 2

x

)
< exE1(x) < log

(
x+ 1

x

)
, x > 0. (24)

Replacing x with ZHS(β) = β2/(2τ 2) and multiplying KHS = 1/(τ21/2π3/2) to the both sides of

the inequalities (24) lead to;

l(β) < πHS(β|τ) < u(β), β ∈ <, τ > 0, (25)

where l(β) = (KHS/2) · log {(ZHS(β)+2)/ZHS(β)} and u(β) = KHS · log {(ZHS(β)+1)/ZHS(β)}.

Now, denote the tail (survival) function of the random variable β|τ given τ > 0, by F̄HS(β|τ) =

1 − FHS(β|τ): that is, (d/dβ)FHS(β|τ) = πHS(β|τ). Then to show that the tail-index of πHS(β|τ)

is α = 1 for any τ > 0, it is sufficient to prove that limβ→∞ F̄HS(cβ|τ)/F̄HS(β|τ) = c−1 for any

c > 0 and τ > 0 because πHS(β|τ) is a symmetric density.

Using LHôpitals Rule, we have limβ→∞ F̄HS(cβ|τ)/F̄HS(β|τ) = c·limβ→∞ πHS(cβ|τ)/πHS(β|τ).

Now, use inequality (25) to bound the function inside of limβ→∞ πHS(cβ|τ)/πHS(β|τ);

l(cβ)

u(β)
<
πHS(cβ|τ)

πHS(β|τ)
<
u(cβ)

l(β)
, c > 0, β ∈ <, τ > 0. (26)

First, calculate the limit of the upper bound in the inequality (26) at infinity by using LHôpitals
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Rule again;

lim
β→∞

u(cβ)

l(β)
= 2 lim

β→∞

log {(ZHS(cβ) + 1)/ZHS(cβ)}
log {(ZHS(β) + 2)/ZHS(β)}

= 2 lim
β→∞

{ZHS(cβ)/(ZHS(cβ) + 1)} · (−c2/ZHS(cβ)2)

{ZHS(β)/(ZHS(β) + 2)} · (−2/ZHS(β)2)

= c2 · lim
β→∞

ZHS(β) · (ZHS(β) + 2)

ZHS(cβ) · (ZHS(cβ) + 1)
= c−2, c > 0.

By the same way, we can show limβ→∞ l(cβ)/u(β) = c−2, c > 0. Use the squeeze theorem to the

inequality (26) to finish the proof.

8. PROOF OF PROPOSITION 3

(a) Clearly,

π(β|τ, ξ) =
1

τ
√

2π

∫ ∞

0

1

λ
exp

(
− β2

2λ2

)(
1 +

ξλ

τ

)−(1/ξ+1)

dλ.

Let x = ξλ/τ . Then

π(β|τ, ξ) =
1

τ
√

2π

∫ ∞

0

exp

(
− β2ξ2

2τ 2x2

)
x−1(1 + x)−(1/ξ+1)dx,

or equivalently, for t = 1/x2:

π(β|τ, ξ) = K

∫ ∞

0

e−Zt(t1/2)−1+1/ξ(1 + t1/2)−(1+1/ξ)dt, (27)

where K = 1/(τ23/2π1/2) and Z(β) = β2ξ2/(2τ 2). Use Z = Z(β) to avoid notation clutter. To

utilize the Newton’s generalized binomial theorem;

(x+ y)r =
∞∑

k=0

(
r

k

)
xr−kyk, |x| > |y|, r ∈ C,
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we divide the integral in (27) into two parts. Then we have

π(β|τ, ξ) = K

{∫ 1

0

e−Zt(t1/2)−1+1/ξ(1 + t1/2)−(1+1/ξ)dt+

∫ ∞

1

e−Zt(t1/2)−1+1/ξ(1 + t1/2)−(1+1/ξ)dt

}
.

(28)

The first integral of (28) is

∫ 1

0
e−Zt(t1/2)−1+1/ξ(1 + t1/2)−(1+1/ξ)dt =

∫ 1

0
e−Zt(t1/2)−1+1/ξ

∞∑

k=0

(−1− 1/ξ

k

)
(t1/2)kdt

=
∞∑

k=0

(−1− 1/ξ

k

)∫ 1

0
e−Ztt(1+1/ξ+k)/2−1dt

=

∞∑

k=0

(−1− 1/ξ

k

)
Z−(1+1/ξ+k)/2γ{(1 + 1/ξ + k)/2, Z},

(29)

where γ(s, x) =
∫ x
0
ts−1e−tdt (s, x ∈ <), is the incomplete lower gamma function.

The second integral of (28) is

∫ ∞

1
e−Zt(t1/2)−1+1/ξ(1 + t1/2)−(1+1/ξ)dt =

∫ ∞

1
e−Zt(t1/2)−1+1/ξ

∞∑

k=0

(−1− 1/ξ

k

)
(t1/2)−1−1/ξ−kdt

=
∞∑

k=0

(−1− 1/ξ

k

)∫ 1

0
e−Ztt−1−k/2dt

=

∞∑

k=0

(−1− 1/ξ

k

)
Ek/2+1(Z), (30)

where Es(x) =
∫∞
1
e−xtt−sdt (s, x ∈ <) is the generalized exponential-integral function of real

order [6, 20]. Use
(−1−1/ξ

k

)
= (−1)k

(
1/ξ+k
k

)
, (29), and (30) to conclude the proof.

(b) Prove by using the change of variable;

π(κ|τ, ξ) = GPD(λ|τ, ξ)
∣∣∣∣
λ=
√

(1−κ)/κ
·
∣∣∣∣
dλ

dk

∣∣∣∣ =
1

τ

(
1 +

ξ

τ

√
1− κ
κ

)−(1/ξ+1)

· 1

2κ2

(
1− κ
κ

)−1/2

=
1

2τ
(τ
√
κ+ ξ

√
1− κ)−(1/ξ+1)(τ

√
κ)1/ξ+1 · 1

κ2

(
1− κ
κ

)−1/2

=
τ1/ξ

2
· κ1/(2ξ)−1(1− κ)−1/2

{τκ1/2 + ξ(1− κ)1/2}(1+1/ξ)
.
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9. PROOF OF COROLLARY 4

(a) In general, the generalized exponential-integral function has the following property; limx→0+ E1(x) =

∞ and limx→0+ Es(x) = 1/(s−1) for s > 1 [6]. Using this property, if k = 0, then lim|β|→0 ψ
S
k=0(β) =

lim|β|→0E1{Z(β)} = ∞ because Z(β) = β2ξ2/(2τ 2). If k ∈ {1, 2, . . .}, then limβ→0+ ψ
S
k(β) =

limβ→0+ Ek/2+1{Z(β)} = 2/k <∞.

(b) In general, the incomplete gamma function has the following property; limx→0+ x
−a ·γ(a, x) =

a−1 for a > 0 [13]. Using this property, lim|β|→0 ψ
R
k (β) = lim|β|→0 Z(β)−(1+1/ξ+k)/2 · γ{(1 +

1/ξ + k)/2, Z(β)} = 2/(1 + 1/ξ + k) <∞ for all k ∈ {0} ∪ {1, 2, . . .}.

(c) In general, the generalized exponential-integral function has the following property; e−x/(x+

s) ≤ Es(x) ≤ e−x/(x + s − 1) for x > 0 and s ≥ 1 [6]. Using this property, we obtain an

inequality e−Z(β)/{Z(β) + s} ≤ Es(Z(β)) ≤ e−Z(β)/{Z(β) + s− 1} for |β| > 0 and s ≥ 1. As

|β| → ∞, both bounds of Es(Z(β)) converges to zero with squared exponential rate, and hence,

Es(Z(β)) also do for any s ≥ 1.

(d) For fixed k ∈ {0} ∪ {1, 2, . . .} and ξ, we have lim|β|→∞ γ{(1 + 1/ξ + k)/2, Z(β)} = Γ((1 +

1/ξ+ k)/2), where Γ is the gamma function, and hence, the function γ{(1 + 1/ξ+ k)/2, Z(β)} is

a slowly varying function [19]. Using this we can re-express ψRk (β) = Z(β)−(1+1/ξ+k)/2 · γ{(1 +

1/ξ + k)/2, Z(β)} by ψRk (β) = β−(1+1/ξ+k) · L(β), where L is a slowly varying function. This

implies that the tail-index of function ψRk (β) is 1 + 1/ξ + k.
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