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Abstract : Analysis of structural and functional connectivity (FC) of human brains is of piv-

otal importance for diagnosis of cognitive ability. The Human Connectome Project (HCP) provides

an excellent source of neural data across different regions of interest (ROIs) of the living human

brain. Individual specific data were available from an existing analysis (Dai et al., 2017) in the

form of time varying covariance matrices representing the brain activity as the subjects perform a

specific task. As a preliminary objective of studying the heterogeneity of brain connectomics across

the population, we develop a probabilistic model for a sample of covariance matrices using a scaled

Wishart distribution. We stress here that our data units are available in the form of covariance

matrices, and we use the Wishart distribution to create our likelihood function rather than its

more common usage as a prior on covariance matrices. Based on empirical explorations suggesting

the data matrices to have low effective rank, we further model the center of the Wishart distribu-

tion using an orthogonal factor model type decomposition. We encourage shrinkage towards a low

rank structure through a novel shrinkage prior and discuss strategies to sample from the poste-

rior distribution using a combination of Gibbs and slice sampling. The efficacy of the approach is

explored in various simulation settings and exemplified on several case studies including our moti-
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vating HCP data. We extend our modeling framework to a dynamic setting to detect change points.

Keywords: change point, covariance matrix, functional connectivity, low rank, Stiefel manifold,

Wishart distribution

1 Introduction

Functional connectomes play a critical role in determining how the brain responds to everyday

tasks and life’s challenges (Glasser et al., 2016a; Jbabdi et al., 2015; Park and Friston, 2013). In

recent years, there has been an abundance of literature focusing on understanding the variation of

functional connectomes in healthy and diseased people and their relationships to various covariates

and phenotypes (Finn et al., 2015; Smith et al., 2015; Zhang et al., 2018). Such interests are inspired

and propelled by large scale neuroimaging studies, such as the Human Connectome Project (HCP)

(Glasser et al., 2016b; Van Essen et al., 2013), the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) (Weiner et al., 2010) and the UK Biobank (Miller et al., 2016). In this article, we focus

our attention to functional connectome (FC) inferred from functional magnetic resonance imaging

(fMRI) data that measures the blood oxygen level dependent (BOLD) contrast signals of each brain

voxel. As opposed to the anatomical axon connections (also referred as structural connectome),

FC quantifies functional dependences between brain regions through correlations or covariances of

BOLD signals. Conventional FC is often represented as a covariance or correlation matrix of fMRI

data over a long recording time (Friston, 2011; Hutchison et al., 2013), where the matrix size equals

the number of ROIs being considered.

While FC is assumed to be fixed or static over time in earlier studies, there is an abundance

of evidence (Hindriks et al., 2016; Hutchison et al., 2013; Monti et al., 2014) in recent studies

showing that FC is a dynamic process. The dynamic FC (dFC) is represented as a time series

of short-term FCs which are calculated using functional MRI data over small time intervals. Due

to limitations of the fMRI BOLD (blood oxygen level dependent) contrast signals, fMRI signals

are not directly analyzed (Glover, 2011; Turner, 2016). The most popular way to transfer BOLD

signals into something that is reasonable to analyze is to calculate coherence between different brain

regions, e.g., correlation or covariance. We choose to use the covariance matrix, which in general

carries more information than the correlation matrix. The goal of this paper is to understand and

infer on the structure of dFC and detect change points in the dFC as the subjects perform a specific

action. We first model the short-term FC using a scaled Wishart distribution and then generalize

the static model to a hierarchical model of a time series of covariance matrices. Our final goal is

to detect and compare individual specific change points along the dFC based on this hierarchical

model.

As argued before, a first step towards change point detection is to model a population of

covariance matrices. This is entirely different from covariance matrix estimation from multivariate

data, which is a well-studied problem; see (Daniels and Kass, 1999; Leonard et al., 1992; Pati

et al., 2014) as some representative examples of Bayesian inference for covariance matrices and
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(Pourahmadi, 2011) for a more comprehensive review. In the covariance estimation context, the

observational data vectors are directly available and the goal is to characterize the dependence

amongst the different variables in the data from multiple independent and identically distributed

samples. On the other hand, our observational units are covariance matrices corresponding to

different individuals observed over time, which we shall henceforth refer to as covariance-valued

data. Hierarchical models for capturing heterogeneity in multiple related groups based on covariance

matrices are relatively fewer in number (Boik, 2002; Flury, 1987, 1984; Franks and Hoff, 2019; Hoff,

2009a). Schott (1999, 2001) developed hypothesis testing methods based on covariance structures.

In a Bayesian context, Barnard et al. (2000); Daniels (2006); Pourahmadi et al. (2007) considered

parsimonious modeling of covariance matrices, which were extended to a longitudinal setting by Das

and Daniels (2014); Gaskins and Daniels (2016); Gaskins et al. (2014); Gaskins and Daniels (2013).

A parallel sequence of works proposes modeling of fMRI data-matrices via Gaussian graphical

modeling techniques (Stingo et al., 2013; Warnick et al., 2018). In contrast to the existing studies,

we built a hierarchical model on observed covariance valued datasets to detect individual specific

change points. The literature on probabilistic modeling for covariance-valued data in the time series

context (Golosnoy et al., 2012; Gouriéroux et al., 2009; Yu et al., 2017) is focused on maximum

likelihood estimation using a non-central Wishart distribution as the likelihood. For example, the

dataset considered in Yu et al. (2017) comprises of low-dimensional (5 by 5) daily realized covariance

(RCOV) matrices for 5 stocks observed across 2274 time points. This single time series sequence

is modeled using a generalized conditional autoregressive Wishart (GCAW) model. In presence of

smaller number of parameters and a huge collection of time points, maximum likelihood estimation

is a natural choice for model fitting. On the other hand, since we are dealing with 10 by 10

covariance matrices observed over 26 time points for 500 individuals, it is important to borrow

information across individuals and seek for a parsimonious modeling framework.

To that end, we develop a suite of hierarchical modeling techniques for covariance-valued data

to provide insight into the structural connectivity of human brains. We use a scaled version of the

Wishart distribution to model the covariance-valued observations. While the Wishart distribution

is commonly used as a prior distribution on inverse-covariance or precision matrices in Bayesian

inference, its usage as a likelihood is novel in the Bayesian context to best of our knowledge. The

presence of a modest number of observations further necessitates structured modeling of the center

of the Wishart distribution, which itself is a covariance matrix. Based on empirical evidence of low

effective ranks of the data matrices, we modeled the center of the Wishart model using an orthogonal

factor model type decomposition and encouraged shrinkage towards a low rank structure through

the development of a novel shrinkage prior. We use a combination of Gibbs and slice sampling to

sample from the posterior distribution whose steps are mostly standard.

Our primary objective is to explore the dynamic nature of FC between different brain regions

during performances of certain tasks. A dynamical FC model provides an overall architecture of

how the brain functions as the individual perform certain tasks. An important scientific goal is to

identify change points (Barry and Hartigan, 1993) in the time series of covariances that split the

data into contiguous segments. Difference in the change points across individuals are indicative of
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behavioral and cognitive differences (Dai et al., 2017). To address this, we extend our hierarchical

model to accommodate a single or multiple change points in a fully Bayesian framework. A novel

combination of existing MCMC algorithms renders sampling from the joint posterior distribution

tractable. The change point model is then implemented on both the HCP and the ADNI datasets

to extract scientifically meaningful conclusions. For the HCP dataset, we studied the change point

pattern during the motor task and discovered the primary FC change point occurs when people

switch the movement from hand and foot to the tongue. For the ADNI dataset, we compared

FCs in two groups of older people (supernormal subjects and normal controls) and found that

supernormal subjects have higher strength of connectivity within posterior regions or between

posterior and anterior regions of their brain.

In this paper, we begin with an illustration of our motivating data set in section 2 followed

by a model for covariance matrices (section 3.1), hierarchical covariance model (section 3.2) and

hierarchical change point model (section 4). Results of detailed simulation study are provided

for each of the three models. In section 5, we provide the results obtained from our motivating

HCP dataset under hierarchical change point model followed by model validation in section 6.

We studied a dynamic extension of our hierarchical model in Appendix (section A). Section B in

Appendix contains some additional results on sensitivity and robustness analysis of the hierarchical

change point model.

2 Data description

We utilize functional MRI data from two large datasets, ADNI (Weiner et al., 2010) and HCP

(Van Essen et al., 2013) to illustrate the proposed method. ADNI was initiated by National Institute

on Aging, the National Institute of Biomedical Imaging and Bioengineering, the Food and Drug

Administration, and some private pharmaceutical companies and non-profit organizations. ADNI

assesses clinical, imaging, genetic and bio specimen biomarkers through the process of normal aging

to early mild cognitive impairment, to late mild cognitive impairment, to dementia or Alzheimer’s

disease (AD). Participants were recruited across North America to participant in three phases of

the study: ADNI1, ADNI GO and ADNI2. A variety of imaging and clinical assessments were

conducted for each participant. Results were then shared by ADNI through the Laboratory of

Neuro Imaging’s Image Data Archive (https://ida.loni.usc.edu/). In our study, we focus on a

subset of healthy subjects that were previously identified in (Lin et al., 2017a). These subjects were

AD free but were clustered in two groups. The first group is called supernormals who exhibited

excellent episodic memory and executive function. The other group is age-matched healthy control

subjects. All their resting-state fMRI data were collected using a 3.0 Tesla Phillips MRI with

an echo-planar imaging sequence (spatial resolution = 3 × 3 × 3 mm3). Structural images were

obtained using an MPRAGE sequence (spatial resolution 1×1×1 mm3), which were then used for

registration during preprocessing. Across individuals, the first 10 volumes were discarded to avoid

potential noise related to the equilibrium of the scanner and participant’s adaptation process. The

remaining 130 volumes were preprocessed using slice time correction and head motion correction.
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The images were then registered to each individual’s own structural image, normalized to the

Montreal Neurological Institute (MNI) standard space and spatially smoothed using a Gaussian

kernel (FWHM = 4 mm). We utilized the automated anatomical labeling (AAL) (Tzourio-Mazoyer

et al., 2002) to percolate the whole brain into 116 regions of interest (ROIs).

The HCP project aims at characterizing human brain connectivity in > 1, 000 healthy adults

and to enable detailed comparisons between brain circuits, behavior and genetics at the level of

individual subjects. The HCP raw and preprocessed data can be easily accessed through Con-

nectomeDB (http://www.humanconnectome.org). The high-quality imaging data and the easy

accessibility make it an ideal dataset for this paper. Majority of the HCP fMRI data were acquired

at 3T with a 2× 2× 2 mm3 resolution. Preprocessing steps using the HCP pipeline (Glasser et al.,

2016b, 2013) were performed before any data analysis, e.g., removing spatial distortions, realigning

volume to compensate for subject motion, registering the fMRI to the structural MRI, reducing the

bias field, normalizing the 4D image to a global mean, masking the data with the final brain mask

and aligning the brain to a standard space. Figure 1 provides an overview of the preprocessing

steps. The Destrieux atlas (Destrieux et al., 2010) was used to percolate cortical regions into 74

Time series of FC

Covariance EstimationOriginal fMRI scans

Destrieux segmentation

Figure 1: An overview of preprocessing steps for extracting dynamic FC from fMRI data.

nodes per hemisphere. Similar to Dai et al. (2017), for the fMRI BOLD signal in each ROI, we first

calculate a mean time series, and then we utilize a sliding window method to calculate a covariance

trajectory {Sit}
k∈[K]

i∈[n],t∈[T ] for subject i at t-th window based on selected ROIs. Therefore, Sit is a

p×p covariance matrix representing the short time functional connectome, where p denotes number

of ROIs.

3 Hierarchical Modeling for Covariance Dataset

Since the covariance matrices are observed for multiple individuals and time points, a natural course

of action is to build a parsimonious model that borrows strength across all observational units. We

first discuss an independence model with scaled Wishart distribution for covariance-valued data

that serves as the basic building block for the forthcoming extensions. Both the central and non-

central Wishart distributions have full support on the space of covariance matrices. However, the
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non-central Wishart distribution has more parameters making prior elicitation more complicated.

Moreover, the presence of key parameters inside a hypergeometric function complicates posterior

computation; in particular, the nice conjugate structure that we exploit throughout the article is

lost. Due to these reasons, we consider a central Wishart likelihood through the rest of the paper.

Motivated by a pattern we observe in the functional connectivity data, the mean structure of the

independence model is encouraged to shrink towards low rank matrices via a parsimonious shrinkage

prior. We develop an MCMC algorithm to fit the independence model to data and show its efficacy

in a simulation study. Next, the independence model is extended to a Bayesian hierarchical model

to incorporate multiple individuals, allowing for subject specific deviations from a common mean

structure. Fitting the hierarchical model requires sampling from a class of distributions on the

Stiefel manifold which can be done efficiently using the algorithm in §3.3 of Hoff (2009b); refer to

§3.2 herein for more details. The hierarchical model leads to our eventual goal of detecting subject

specific change points in the functional connectivity data.

3.1 Independence Model

We begin by describing the details of the independence model. Let {Sj}Nj=1 be a collection of

independent and identically distributed p × p covariance matrices. We probabilistically model

the Sjs using a Wishart distribution, which is arguably the most recognized distributional family

for covariance matrices. We shall use the standard Wp(ν, V ) notation to denote the Wishart

distribution on the space of p× p positive definite matrices, with degrees of freedom ν > p− 1 and

a p × p positive definite scale matrix V . The density Wp(ν, V ) distribution has a density (in X)

proportional to

|V |−ν/2 |X|(ν−p−1)/2 e−tr(V −1X)/2.

Specifically, we use a scaled Wishart distribution Wp(φ, φ
−1Ω) to model the Sjs,

Sj
ind.∼ Wp(φ, φ

−1Ω), j = 1 . . . N. (1)

The introduction of the parameter φ in the scale matrix is to decouple its presence in both the

mean and covariance. For S1 ∼Wp(φ,Ω), one has

E[S1] = φΩ, Var(S1,ij ) = φ(ω2
ij + ωiiωjj), Cov(S1,ij , S1,kl) = φ(ωikωjl + ωilωjk),

whereas for S1 ∼Wp(φ, φ
−1Ω),

E[S1] = Ω, Var(S1,ij ) = φ−1(ω2
ij + ωiiωjj), Cov(S1,ij , S1,kl) = φ−1(ωikωjl + ωilωjk).

Thus, in the parameterization we work with, Ω is the population mean. We henceforth fix φ at

(p+ 1) and validate our assumption in Appendix D. Now, we focus our attention on modeling the

mean Ω.

An unstructured p×p covariance matrix has p(p+1)/2 free elements, (e.g. in the HCP dataset,
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p = 10 leading to a total number of 55 parameters and in the ADNI dataset, p = 7 in the present

case leading to 28 parameters). Given that we only have a modest number of time points, it

is important to make meaningful structural assumptions on Ω to reduce the effective number of

parameters to be estimated. We conducted an exploratory analysis to find patterns in the data

matrices that could direct us towards a parsimonious model. The data matrices and their inverses

did not contain any obvious sparsity pattern. Next, we investigated the effective ranks of the data

matrices. For a p × p positive definite matrix A with eigenvalues s1(A) ≥ s2(A) ≥ sp(A) ≥ 0, its

effective or intrinsic rank (Vershynin, 2012),

re(A) : =

∑p
k=1 sk(A)

s1(A)

is the ratio of its trace and largest eigenvalue. The effective rank satisfies 1 ≤ re(A) ≤ rank(A), so

that it always provides a lower bound to the actual rank. Further, the effective rank is a smooth

function of its argument. For example, consider the class of matrices

Mλ = uuT + λIp

for λ > 0 and u a p-dimensional vector of unit length. The matrices Mλ increasingly get close to

being rank deficient as λ ↓ 0, however, this is not captured by the rank as rank(Mλ) = p for any

λ > 0. On the other hand, re(Mλ) = 1 + (p − 1)λ/(1 + λ), which smoothly decays to 1 as λ ↓ 0.

These features render the effective rank a suitable measure to capture the intrinsic dimensionality

of a matrix and indicate potential near rank-deficiencies.

Figure 2: Boxplot of effective ranks of the data matrices for the motor task of HCP across the 26
time points for 50 randomly chosen individuals. Each boxplot corresponds to a separate individual.

Figure 2 shows boxplots of the effective ranks of the data matrices across the 26 time points for
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50 randomly selected individuals from motor task of HCP dataset. It is evident that the 10 × 10

data matrices have low effective rank, with the bulk of the empirical effective rank distribution

between 1.5 and 3. This observation motivated us to consider an orthogonal factor model type

decomposition (Hoff, 2009a) for Ω to exploit the near low-rank structure as

Ω = V DV T + σ2Ip, (2)

where V ∈ Rp×r∗ for some r∗ ≤ p is a semi-orthogonal matrix satisfying V TV = Ir∗ , and

D = diag(d1, . . . , dr∗) is a diagonal matrix with non-negative diagonal entries. Such a decom-

position readily satisfies the positive definiteness constraint on Ω. Different variance components

are typically employed in factor analysis to account for variables may with different scales. How-

ever, since all the entries represent functional connectivities, we make the simplifying assumption

of using the same σ2 for all the components.

We operate in a Bayesian framework to perform inference based on the posterior distribution

of the model parameters. Before proceeding to describe our prior specifications, it is important to

discuss the role of r∗ in what follows. In a fully Bayesian framework, one may treat r∗ as a parameter

which designates the effective rank of Ω and assign it a prior distribution; the discrete uniform

distribution on {1, . . . , p} being a default choice. Under this prior, the posterior distribution of r∗

is proportional to the marginal likelihood of the data given r∗, which is intractable in the present

context. While it is possible to sample r∗ inside a larger trans-dimensional MCMC algorithm such as

the reversible jump MCMC (RJMCMC), its implementation remains computationally challenging,

especially when considering extensions to the hierarchical modeling setup later on. Moreover, the

effective rank does not have a clear biological interpretation in our real application and is purely

a modeling device to induce parsimony. Based on these considerations, we undertake a shrinkage

approach rather than explicit selection of the rank. Specifically, we set r∗ to a conservative upper

bound, with p being a default choice, and encourage a subset of the diagonal entries of D to shrink

towards zero. If A ⊂ {1, . . . , p} denotes the active subset, that is, the subset of diagonal entries

of D that are left unshrunk, then V DV T ≈ VADAV
T
A , where VA denotes the p × |A| sub-matrix

of V corresponding to the columns in A, and DA denotes the corresponding |A| × |A| diagonal

sub-matrix of D. This leads to an approximately low rank decomposition under the posterior,

which is sufficient for our purpose. In the factor modeling context, Bhattacharya and Dunson

(2012) considered a shrinkage prior on the factor loadings matrix rather than placing a prior on the

number of factors, e.g., as in Lopes and West (2004). We have a very different shrinkage mechanism

as our shrinkage operates on the diagonal matrix D.

Fixing r∗, the unknown parameters in our model are (V,D, σ2) with parameter space Vp,r∗ ⊗
Dr∗ ⊗R+, where Vp,r∗ denotes the Stiefel manifold of p× r∗ semi-orthogonal matrices, and Dr∗ the

collection of r∗ dimensional diagonal matrices with non-negative entries. The likelihood function
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for the parameters is given by

L(V,D, σ2) = |Ω|−
Nφ
2

N∏
j=1

exp

{
− φ

2
tr (Ω−1Sj)

}
. (3)

We now discuss prior choices on the parameters. For computational convenience, we reparame-

terize to (V, D̃, σ2) where D̃ = D/σ2, so that Ω = σ2(V D̃V T + Ip). We place a uniform prior on V

supported on the Stiefel manifold Vp,r∗ , and an inverse-gamma IG(ασ, βσ) prior on σ2. To set up

our sparsity favoring shrinkage prior on the diagonal entries d̃hs of D̃, first decompose

d̃h = τλh, h = 1, . . . , r∗. (4)

In (4), τ plays the role of a global shrinkage parameter while the λhs allow for coordinate specific

deviations, much in the spirit of the global-local shrinkage priors popularly used in regression

(Carvalho et al. (2010)). We place independent half-Cauchy priors on the λhs, λh
ind.∼ Ca+(0, 1),

with density proportional to 1/(1+ t2) I0,∞(t). The half-Cauchy prior is a popular choice as a prior

distribution of shrinkage parameters due to its positive density at zero and heavy tails (Polson

and Scott (2012); Carvalho et al. (2010)). We complete the prior specification by placing a half-

Cauchy prior truncated to (0, 1) on τ . Truncating the prior on the global parameter leads to better

identifiability and is recommended by van der Pas et al. (2014) in the context of the horseshoe

prior. The multiplicative prior on the d̃hs can also be interpreted as an additive one-way ANOVA

type decomposition in the logarithmic scale,

log d̃h = µ+ βh, µ = log(τ), βh = log(λh), h = 1, . . . , r∗,

with grand mean µ and main effects βhs. The posterior computation is also conveniently carried

out in the logarithmic scale, which we describe next.

We develop a fully automated and easy to implement Markov chain Monte Carlo algorithm

to sample from the joint posterior distribution of (V, D̃, σ2) given the data. Specifically, we use

a combination of Gibbs sampling with slice sampling and Metropolis-within-Gibbs to iteratively

sample from the full-conditional distribution of each parameter block given the rest. The sampler

iterates through the following steps; the derivations are deferred to the Appendix (section E). We

use the notation [θ | −] to denote the full conditional distribution of a parameter.

• Sample V from its matrix Bingham(SN , φE−1/2σ2) full-conditional distribution. The matrix

Bingham(A,B) distribution has a density with respect to the uniform distribution on the

Stiefel manifold given by

pB(X | A,B) ∝ etr(BXTAX),

where A and B are symmetric and diagonal matrices, respectively. In our case, SN (=∑N
j=1 Sj) is a symmetric matrix by definition and E = (D̃−1 + Ir∗) The matrix Bingham
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distribution is conveniently sampled using the R package rstiefel (Hoff, 2013).

• Update the {βh}s from their independent full conditional distributions using slice sampling.

Set M = V TSNV and consider the transformation wh = (1 + βhµ)−1 for h = 1, . . . , r∗. Then

sample

[uh | wh,−] ∼ Uniform[0, {µ2 + ((1− wh)/wh)2}−1],

[wh | uh,−] ∼ Gamma(shape = Nφ/2 − 1, rate = φMhh/(2σ
2)) truncated to the region

[{1 +
√

(1/uh)− µ2}−1,∞], and set βj = (1− wh)/(whµ).

• To sample µ, propose µ∗ ∼ N(µ, s2) and compute the Metropolis ratio

α(µ, µ∗) =
Π(µ∗ | −)

Π(µ | −)

where Π(µ | −) denotes the full-conditional of µ. Accept µ∗ with probability min{α(µ, µ∗), 1}.

• Sample σ2 from its inverse-gamma full conditional distribution as

[σ2 | −] ∼ InvGamma

(
ασ − 1 +

Npφ

2
, βσ +

φtr (QSN )

2

)
where Q = (V D̃V T + Ip)

−1.

We observed good mixing and convergence of the above MCMC sampler based on standard MCMC

diagnostics. Although not our primary motivation, one can estimate the effective rank based on a

simple post-processing step of the MCMC samples for the {dh}s. As in Bhattacharya et al. (2015);

Li and Pati (2017) at each MCMC iteration, we cluster the {dh}s into two groups using 2-means

clustering and save the size of the group having the larger mean. The mode of these numbers across

the MCMC iteration is then used as an estimate of the effective or intrinsic rank. We find that

this approach performs well in our simulation and real examples. A more nuanced approach for

post-processing was proposed by Li and Pati (2017), which can also be used in the present context.

3.1.1 Simulation Study for Independence Model

We conduct a detailed simulation study to illustrate the performance of the independence model in

terms of recovering the true parameters. We fixed p = 50 and varied N ∈ {100, 250, 500, 750, 1000}.
The true intrinsic rank of the data generating mechanism was fixed at 3 to mimic the observation

in Figure 2. We set φ = p+ 1, the true σ2
0 = 0.25, the true D̃0 = {1.25, 2, 1.55} and considered V0

from a uniform distribution on Stiefel manifold Vp,r∗ . 100 independent datasets have been generated

from the model (1). We denote the true covariance matrix σ2
0(V0D̃0V

T
0 + Ip) by Ω0.

For model fitting, we set r∗ = 10; see Section B of the Appendix for a sensitivity analysis.

The inverse-gamma hyperparameters ασ and βσ were elicited in an empirical Bayes approach.

Specifically, we used a method-of-moments type estimator for these hyperparameters. We ran our

MCMC algorithm for 10,000 many iterations, discarding the first 5000 many iterates as burn-in.
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Letting Ω̂B denote an estimate of the posterior mean based on the retained MCMC samples, we

provide boxplots of the scaled Frobenius norm difference ‖Ω̂B −Ω0‖/p across the 100 replicates for

the different values of N in Figure 3a. Here, and elsewhere, ‖A‖ =
√

tr (ATA) denotes the Frobenius

norm of a matrix. As expected, both the center and spread of the boxplots tend to decrease with

increasing N , implying the consistency of the posterior mean in recovering the population mean.

Figure 3b shows density plots of the posterior samples of σ2 which increasingly concentrate around

the true value, σ2
0 = 0.25, with increasing N .

N
N N N NN

(a)

N = 100
N = 250
N = 500
N = 750
N = 1000

!"

(b)

Figure 3: Results for the independence model with p = 50, σ2
0 = 0.25, D̃0 = {1.25, 2, 1.55}, and

N ∈ {100, 250, 500, 750, 1000}. (3a) Boxplots of the scaled Frobenius norm difference ‖Ω̂B −Ω0‖/p
across the 100 replicates for the different values of N , where Ω̂B is the posterior mean and Ω0 is
the population mean. (3b) Posterior density of σ2 for different values of N increasingly concentrate
around the true value 0.25.

Next, we compare the performance of the posterior mean Ω̂B with the sample mean Ω̂s =

N−1
∑N

j=1 Si, which is an unbiased estimator of Ω0. We consider three different norms between

covariance matrices (Ian L. Dryden and Zhou, 2009) listed in Table 1.

Name Notation Form

Euclidean dE(S1, S2) ‖S1 − S2‖
Riemannian dR(S1, S2) ‖ log(S

−1/2
1 S2S

−1/2
1 )‖

Cholesky dC(S1, S2) ‖chol(S1)− chol(S2)‖

Table 1: Notation and definition of distances between two covariance matrices.

For each distance d, we compare d(Ω̂B,Ω0) and d(Ω̂s,Ω0) for p ∈ {50, 100}; summary measures

are tabulated in Table 2 and Table 3 for p = 50 and p = 100 respectively. We scaled the distances

except the Riemannian norm by p for tabulation; the Riemannian norm is scale-invariant. Boxplots

of the distances (in their original scale) across the 100 replicates are provided in Figure 4. It is

evident that the posterior mean overall provides a substantial improvement over the sample mean,

especially in higher dimensional situations.

Finally, we illustrate the performance of the post-processing step outlined in the previous sub-

section to estimate the effective rank. We only consider N = 100 and 2 different settings of D̃, (i)

11



p = 50
Euclidean Riemannian Cholesky

PM SM PM SM PM SM

N = 100 1.650.20 2.100.22 44.41.8 71.92.0 0.890.4 1.340.7

N = 250 1.350.17 1.480.20 42.21.5 62.81.7 0.830.4 1.240.6

N = 500 1.010.15 1.200.17 36.11.4 53.61.7 0.760.3 0.990.6

N = 750 0.710.09 1.080.11 33.31.0 48.51.3 0.710.1 0.900.3

N = 1000 0.510.06 0.930.10 32.20.9 44.61.1 0.670.1 0.820.2

Table 2: The average of 100×d(Ω̂B,Ω0) and 100×d(Ω̂s,Ω0) over 100 replicates for p = 50, where d
generically refers to one of the three distances in Table 1. Subscripts denote 100×standard deviation
across the 100 replicates. PM & SM correspond the distances for the posterior mean and sample
mean respectively. All the displayed values are scaled by p = 50.

p = 100
Euclidean Riemannian Cholesky

PM SM PM SM PM SM

N = 100 1.040.46 1.310.41 39.32.1 98.72.2 0.580.4 0.910.5

N = 250 0.920.40 1.180.39 35.51.8 86.12.0 0.510.3 0.790.4

N = 500 0.680.28 0.740.26 31.41.6 76.11.8 0.460.3 0.680.3

N = 750 0.390.20 0.480.23 30.31.4 69.01.5 0.390.2 0.610.2

N = 1000 0.360.17 0.450.18 28.81.4 63.41.4 0.350.1 0.540.2

Table 3: Same setting as in Table 2 with p = 100.

Figure 4: Boxplots of 100× d(Ω̂B,Ω0) and d(Ω̂s,Ω0) over 100 replicates for N = 100, where d
generically refers to one of the three distances in Table 1. PM & SM correspond the distances for
the posterior mean and sample mean respectively.

{1.25, 2, 1.55} and (ii) {0.75, 1.25, 2, 1.55}. Setting (ii) has a weaker signal strength compared to

(i). Following the discussed methodology and setup, we provide the rank estimates under different

scenarios in Figure 5 which shows high probability mass at 3 and 4 in Figure 5a and 5b respectively.

In different simulation settings, our proposed method is able to recover the true ranks. We highlight

that the simulation is performed under mild model misspecification - the true covariance matrix

in our simulation study is chosen to be exactly low-rank whereas our model only assumes a near

low-rank structure. Despite this, our model is able to detect the true rank.
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Figure 5: Rank estimate for Independence model with N = 100, p = 50 and σ2
0 = 0.25. Lines on

the bars shows the standard errors of probability for each point across replicates. The probability is
defined as average posterior probability across replicates for each point. (5a) Left panel plot provides
the rank estimate for setting (i) D̃ = {1.25, 2, 1.55} which indicates high probability mass at 3. (5b)
Right panel plot provides the rank estimate for setting (ii) D̃ = {0.75, 1.25, 2, 1.55}. There is a
moderately high probability mass at 4 and a significant amount of mass at 3 because of existence of
a weak signal.

3.2 Hierarchical Covariance Model

In this subsection, we extend the independence model to a hierarchical modeling framework encom-

passing all the individuals. Our hierarchical modeling framework lets the different individuals to

share common parameters while allowing for subject specific deviations, striking a balance between

pooling of information across different individuals while retaining flexibility. Letting Sit denote the

observed covariance matrix for individual i at time t, we let

Sit
ind.∼ Wp(φ, φ

−1Ωi)

Ωi = V DiV
T + σ2

i Ip

 t = 1, . . . , T,

i = 1, . . . , n.
(5)

The first line of (5) posits the same scaled Wishart model as in the previous subsection with

individual specific mean Ωi. As discussed earlier, we only have data on T = 26 time points for each

individual. On the other hand, there are a relatively larger number of individuals in the study. For

this reason, rather than separately fitting the independence model for each individual, we consider

a structured decomposition of Ωi that lets Di and σ2
i vary across individuals, while keeping V

fixed. This is akin to an expansion of the Ωis in terms of a fixed dictionary V , with subject specific

loadings. This fixed dictionary expansion vastly reduces the number of model parameters and allows

one to borrow information across individuals to estimate the common dictionary V . We continue

using σ2
i I for the residual part in the covariance decomposition for model parsimony. We later

conduct model validation to show that model (5) provides an adequate fit to the data compared to

separately fitting the independence model.

We continue to use the uniform prior on the Stiefel manifold for V . After reparameterizing to D̃i,

we place independent copies of the shrinkage prior introduced earlier on the D̃is, and independent

inverse-gamma priors on the σ2
i s.
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We extend the MCMC algorithm for the independence model to the hierarchical setting. The

updates for D̃i and σ2
i proceed independently across i exactly along same lines as before. However,

since V is common to all individuals, its full conditional no longer remains a matrix Bingham

distribution. We show in the Appendix (section F) that the full-conditional distribution of V is

given by

[V | −] ∝ exp

[
φ

2

n∑
i=1

tr

{
V
E−1
i

σ2
i

V T

T∑
t=1

Sit

}]
∝

r∗∏
j=1

exp(vT
jHjvj),

where Hj =

n∑
i=1

(
φS∗i

2eijσ2
i

), S∗i =

T∑
t=1

Sit, and Ei = (D̃−1
i + Ir∗).

(6)

We sample from the above density by adopting the Gibbs sampling scheme of Hoff (2009b) to

sample from a class of matrix Bingham–von Mises–Fisher (BMF) distributions (Khatri and Mardia,

1977). The BMF distribution has a density on the Stiefel manifold given by pBMF(V | A,B,C) ∝
etr(CTV +BV TAV ). Hoff considers the case when B is diagonal, noting that the general symmetric

case can be handled by a transformation, when the density assumes the form

pBMF(V | A,B,C) ∝
K∏
j=1

exp(cT
j vj + bj,jv

T
j Avj).

Hoff used Gibbs sampling to sample from pBMF by alternately sampling from the full-conditional

distributions of each column vj given the rest; see § 3.3 of Hoff (2009b) for details.

The distribution of [V | −] in equation (6) is almost identical to the above BMF distribution;

we have C = 0 in our case and matrices Hj in place of bj,jA. This minor difference is immaterial

from a Gibbs sampling standpoint; the steps can be found in the Appendix: section F.

3.3 Simulation study for Hierarchical Covariance Model

We conduct a replicated simulation study to illustrate the operating characteristics of the hierar-

chical model. We set n = 100, T = 26 and p = 50 for our simulations. The true V0 is generated

uniformly on the Stiefel manifold. Also, for each i, the diagonal entries of the true D0i are gener-

ated uniformly between 0 and 5, while the σ2
i s are generated uniformly between 0.25 and 0.50. We

generate 100 independent simulation replicates as above.

We fit the hierarchical model using the MCMC outlined in the previous subsection. We set

r∗ = 10 and use a modification of the empirical Bayes procedure to elicit the hyperparameters ασ

and βσ. As metrics of parameter recovery, we considered

dΩ =
1

n

n∑
i=1

‖Ω̂i − Ω0i‖︸ ︷︷ ︸
d

(i)
Ω

, dσ =
1

n

n∑
i=1

|σ̂2
i − σ2

0i|︸ ︷︷ ︸
d

(i)
σ

. (7)

where Ω̂i and σ̂2
i are the posterior means of Ωi and σ2

i for i = 1, . . . , n. d
(i)
Ω and d

(i)
σ is an individual
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specific measure of the distance of the posterior mean from the truth, while dΩ and dσ are average

measures over all the individuals.

Figure 6: Boxplots of {d(i)
Ω }ni=1 defined in (7) averaged over the simulation replicates for the hier-

archical (H) and independence (I) model. The boxplot for the hierarchical model shows a smaller
spread due to borrowing information across individuals.

As a point of comparison, we also fit the independence model in the previous subsection sep-

arately for each individual. Figure 6 shows boxplots of {d(i)
Ω }ni=1 averaged over the simulation

replicates for the hierarchical and independence model. The tighter spread of the boxplot for the

hierarchical model indicates the gains from borrowing information across subjects. The hierarchical

model also successfully recovered the true ranks as shown in Figure 7.

Figure 7: Rank estimates for Hierarchical and Independence Model with (n, p) = (100, 50). Left
panel: The true ranks across individuals shown in a heat map of the binary matrix R = (rih), with
rih = 1 if the data matrix for individual i has rank h, and 0 otherwise. The middle and right panels
correspond to the estimated ranks by the hierarchical and independence models respectively.

We conducted a second set of simulations by varying n ∈ {100, 200, 300, 400, 500} and p ∈
{50, 100, 150, 200, 250}. A summary is presented in Figure 8. In the top left panel, we provide the

boxplot of dΩ across the 100 simulation replicates for the different values of n keeping p fixed, while

the bottom left panel provides the same for varying p and fixed n. As expected, the estimation

performance improves for larger n and smaller p. We observe similar pattern in the density plots

of dσ w.r.t. increasing n, fixed p (Figure 8b) and fixed n, increasing p (Figure 8d).
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Figure 8: Left panel: Boxplot of dΩ across simulation replicates for varying n (top panel) and
varying p (bottom panel). Right panel: Density plots of dσ across simulated replicates for varying
n (top panel) and varying p (bottom panel).

3.4 Real Data Analysis for ADNI dataset

In this case study, we utilize 18 subjects’ resting-state fMRI data from ADNI. Half of them are

from supernormal (SN) subjects who possess excellent (Lin et al., 2017a,b), and the other half are

healthy control (HC) subjects. Each group contains 9 individuals with its resting state fMRI data at

baseline preprocessed. From previous literature, we identified seven interesting ROIs, left occipital

cortex, left occipital cortex, left precuneus, left superior temporal cortex, right middle frontal gyrus,

right parahippocampus, right thalamus (indexed as ROI 1, 2, ..., 7), that are potentially linked to

cognition, emotional regulation and memory. After preprocessing, we obtained a mean BOLD

signal within each ROI and then applied a sliding window method to obtain a 7×7×24 covariance

matrix time series. We applied our proposed hierarchical model on this dataset for different group of

individuals and obtained Bayes estimates of individual specific covariance matrix Ωi for i = 1, .., 9.

(Note that in Section 5.4 we have validated that there is no change point in these covariance

trajectories.)

To compare the functional connectivity between ROIs across SN and HC, we look at all the

off-diagonal elements of Ωi(i = 1, . . . , 9) for both SN and HC using an overlaid histogram in Figure
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9. The overlaid histograms clearly show that on an average the FC for the SN individuals is higher.

In addition, it is also important to know which one out of the 21 pairs of regions accounts for the

Figure 9: Histogram of off-diagonal elements which denote FC between ROIs among supernor-
mals(SN) and health controls(HC).

maximum separation in Ωi between SN and HC. A simple multiple comparison test reveals that the

FC difference between SN and HC for the ROI-pairs (2, 3) and (3, 6) are statistically significant (p-

values 0.038 and 0.013), where (2,3) represents a posterior regions’ connection and (3,6) represents

an anterior-posterior connection. This finding is in line with the literature (Lin et al., 2017a): SN

group has higher strength of connectivity within posterior regions or between posterior and anterior

regions. Box plots for ROI-pairs in Figure 10 clearly show that the FC for SN is higher than HC

for both the ROI-pairs. Next we compare overall functional connectivity between supernormals

and healthy controls through corresponding magnitudes of FC between different ROIs. Figure 11

represents the heat map of matrices associated with hierarchical posterior estimate of Ω and sample

mean. Each element in the associated matrix represents the mean difference of absolute values of

off-diagonal elements of Ω in Figure 11a and the sample mean in Figure 11b . These off-diagonal

elements represent individual specific FC between different ROIs. The difference is slightly more

evident for the posterior estimate in Figure 11a than the sample mean in Figure 11b.

4 Hierarchical Change point Model

Although a majority of previous works on modeling functional connectivity assumes stationarity

(Friston, 2011; Hutchison et al., 2013), recent developments in Dynamic Connectivity Regression

Cribben et al. (2013) suggest the necessity of incorporating non-stationary modeling of the time

series of covariance matrices. It is reasonable to assume that different parts of brains will react
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Figure 10: Left panel represents the boxplot of {Ωi[2, 3], i = 1, . . . , 9} which are basically FC between
ROI 2 and ROI 3 among healthy controls(HC) and supernormals(SN). Right panel represents the
same between ROI 3 and ROI 6.

(a) Individual specific Ω. (b) Individual specific sample mean.

Figure 11: The magnitudes of functional connectivity between different ROIs are compared in case of
hierarchical posterior estimate of Ω (left panel) and sample estimate (right panel) for ADNI dataset
consisting of supernormals and healthy controls. The (i, j)th element of the associated matrix for
both heatmaps is measured as mean difference of absolute off-diagonal values of ith supernormal
and jth healthy control.

distinctly under the effect of external stimuli, so assuming a common mean for the Wishart distri-

bution in (5) is not warranted unless the subjects are in a resting state. Moreover, in the presence

of multiple subjects, it becomes necessary to borrow information across multiple subjects while

retaining some commonality features. Preliminary time series models based on sliding window

technique (Lindquist et al., 2014) and asymptotic tests are based on a single subject and do not

naturally extend to the case when multiple subjects are concerned.

In the following, we extend our hierarchical model in (5) to include the most simple depar-

ture from stationarity, which is accommodating a single change point in the mean of the Wishart
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distribution.

Focussing on one action, the hierarchical change point model across individuals is

S
(1)
it ∼W (φ1, φ

−1
1 Ω1i), t = 1, . . . , ci

S
(1)
it ∼W (φ2, φ

−1
2 Ω2i), t = ci + 1, . . . , T

 i = 1, . . . , n. (8)

where ci represents the change point specific to subject i. We used scaled Wishart distributions

with different individual specific means Ω1i and Ω2i before and after the change points respectively.

A similar orthogonal factor model type decomposition (discussed in (2)) is proposed on Ω1i and

Ω2i .

Ω1i = V1D1iV
T

1 + σ2
1iIp, Ω2i = V2D2iV

T
2 + σ2

2iIp, i = 1, . . . , n. (9)

Observe that the orthogonal matrices V1 and V2 are fixed across individuals and thus viewed as

a common dictionary on which individual specific loadings D1i and D2i act on to create subject

specific deviations. We place independent uniform prior distributions on the Stiefel manifold for

V1 and V2 along with independent global-local prior on D̃1 and D̃2 exactly as in §3.1. Independent

inverse-gamma priors are chosen on the σ2
1i

and σ2
2i

. We assumed that apriori any time point is

equally probable to be a change-point, i.e.,

ci ∼ Discrete-Uniform({1, . . . , T}). (10)

An efficient Gibbs sampler is developed mimicking §3.1 with an additional step to update the

change-points ci, i = 1, . . . , n. A detailed calculation of the steps is provided in the Appendix

(section F).

4.1 Simulation Study for Hierarchical Change point Model

To demonstrate the the hierarchical change point model (8) on simulated datasets, we consider

n = 100, p = 50 and T = 26 with n2 = 40 individuals having change-points c0i ∈ {2, . . . , T − 1}
and the remaining individuals with size n1 = 60 having no change points. For simplicity and to

develop a simulation scenario analogous to the HCP dataset, we assume all the individuals are

observed at the same time points and the boundary points cannot be considered as a candidate

for a change-point. For clarity of exposition, any parameter with subscript “1” correspond to the

pre-change-point regime (deemed as Group 1) and the ones with subscript “2” corresponds to the

post-change-point (Group 2).

True individual specific ranks are generated from discrete uniform distribution spanning over

{1, . . . , r∗ = 10}. The true values of the diagonal matrices {D01i}ni=1 and {D02i}
n2
i=1 are generated

from unifrom(0, 5) to include a wide range signal strengths. {σ2
01i
}ni=1 and {σ2

02i
}n2
i=1 are generated

from uniform(0.25, 0.50). Using these values, Ω1 and Ω2 are constructed using the equation (9) and

we set (φ1, φ2) = (p+ 1, p+ 1). 100 replicated datasets are then generated from (8).

The MCMC is run for 5,000 iterations leaving a burn-in sample of 5,000. Subject-specific
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Figure 12: Change point estimates of Hierarchical Change Point Model with (n, p, T ) =
(100, 50, 26). (12a) Left panel represents the true change points with a heat map of the binary
matrix C = (cil), where cil = 1 if the ith individual has change point at l, and 0 otherwise. (12b)
Right panel shows the heat map of individuals with estimated change points.

change point estimates ĉi are obtained from the posterior mode of ci. Since the focus of this section

is correct detection of change-points, we only display the estimated change-points corresponding

to the n2 = 40 individuals in Figure 12. Our proposed model is successful to recover individual

specific change points. The ranks corresponding to the covariance matrices across individuals are

also estimated correctly in all the cases as presented in Figure 13.

To demonstrate consistency of the estimate of Ωji, j = 1, 2; i = 1, . . . , n with increasing sample

size, we consider another simulation setting where p is fixed at 50 and n takes values in the range

{100, 200, 300, 400, 500} with n2 ∈ {40, 80, 120, 160, 200}. Figure 14 presents the summary of the

variability of the parameters (Ω1i, σ
2
1i,Ω2i, σ

2
2i) appropriately summarized for the n individuals using

the metrics dΩ and dσ over 100 simulated replicates. It is evident that on an average dΩ1 (Figure

14a) and dΩ2 (Figure 14c) decreases with a smaller spread with increasing n and n2 respectively.

Similarly the density plots of dσ1 (Figure 14b) and dσ2 (Figure 14d) become more concentrated as

n increases.

5 Real Data Analysis for HCP Dataset

In this section, we consider the HCP dataset (Van Essen et al., 2013) as discussed in §2. Time series

of covariance matrices describing the connectivity were acquired from each subject while they were

performing different tasks involving different neural systems, under resting state or external stimuli.

A quick exploratory analysis of the dataset shows the wide variation in the range of values of the

covariance matrices. For the change point model (8) to be applicable, we scale each covariance

matrix by the lowest singular value of that matrix as a simple variance stabilizing transformation.
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Figure 13: Rank estimates of Hierarchical Change Point Model. Upper panel: The heat of true
and estimated ranks corresponding to before change points scenario. Lower panel provides the after
change point picture for n2 = 40 individuals with change points. The construction of binary matrices
are described in Figure 7.

Based on empirical validation from Figure 2 on small effective ranks of the covariance matrices,

we applied the hierarchical change point model (8). Task-specific summary of findings is provided

below.

5.1 Case study for Motor Task

The HCP motor task experiment was set up by Buckner and colleagues (Buckner et al., 2011).

Participants are presented with visual cues that ask them to either tap their left or right fingers, or

squeeze their left or right toes, or move their tongue to map motor areas. In the experiment, there

are 13 blocks, with 4 hand movements, 4 foot movements, and 2 tongue movements. In addition,

there are 3 15-second fixation blocks between different tasks. We identified ten cortical ROIs

related to the motor control around the motor strip area, including left and right postcentral gyrus,

precentral gyrus, and central gyrus, and generated a 10× 10 covariance matrix time series with 26

time points. The proposed hierarchical change point detection model is then applied with fitted
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Figure 14: Left panel : Boxplot of dΩ1 (upper panel) and dΩ2 (lower panel) across simulated
replicates for increasing n and n2 respectively. Right panel : Density plot of dσ1 (upper panel) and
dσ2 (lower panel) w.r.t. varying n and n2 respectively.

ranks in {5, 6, 7, 8}. Change points are observed for 36 individuals; refer to the Table A1. Figure

15a shows the 36 labeled individuals from the first column of Table A1 with their corresponding

most dominant change points. The histogram in Figure 15b displaying the pattern of the change

points across the individuals shows that most of the individuals have change points at time point 23.

In the experiment design, this corresponds to the time point of switching the movement from hand

and foot to the tongue. We applied our methodology on the gambling task as well. A discussion

on the findings is deferred to the Appendix (section C).

One obvious limitation of (8) is that it can only account for the most dominant change point.

It is possible that there exists more than one change point for a specific individual under a certain

task. In the following, we extended the methodology to enable detection of multiple change points.

5.2 Multiple Change point Analysis

Our hierarchical change point model detects the most dominant change points along the time

frame. We adapted a standard sliding window approach to detect multiple change points for
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Figure 15: In Figure (15a), we have provided heat map of a binary matrix consisting of 1 to (i, j)th

position which corresponds to ith labeled individual and jth (j = 1, . . . , 26) time point which is a
change point for the corresponding individual and 0 otherwise. Heat map was made with individuals
consisting of change points under Motor task. Individuals are labeled on both sides of the y-axis.
Figure (15b) is histogram of change points under Motor task which indicates most of the individuals
have change points at 23.

different individuals. Denote by ci (1 < ci < T ) the first most dominant change point in the

interval {1, . . . , T} for individual i which is detected through the hierarchical change point model.

We slide our time window before and after the most dominant change point ci. We note here that

applying our change-point model over a time window containing ci recovers the ci as the most

dominant change point. Hence we consider the windows {1, . . . , ci−1} & {ci+1, . . . , T} for further

detection of the next dominant change points. Suppose, there is a change point c∗i in the interval

{1, . . . , ci− 1}. Then we again split the time window into {1, . . . , c∗i − 1} & {c∗i + 1, . . . , ci− 1} and

apply the change point detection method to the two intervals separately. Same procedure is followed

on the time window {ci+1, . . . , T}. Figure 16 shows the individuals specific multiple change points

under the motor task where we considered individuals with at least two change points. W detected

21 individuals with multiple change points under motor task which is shown in Figure 16. There

is no individual under motor task with more than four change points.

5.3 ADNI Dataset

We applied the hierarchical change point model on the previously described ADNI dataset, where

the subjects are believed to be at a resting state. As anticipated, our model did not detect any

change points in the dataset for both supernormals and health control groups. To test for model ad-

equacy, we used the Watanabe-Akaike information criterion (WAIC) (Gelman et al., 2014). WAIC

is a fully Bayesian approach to measure model accuracy computed with log pointwise posterior

predictive density and then adding a correction for the effective number of parameters to adjust for
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Figure 16: Multiple change points for different individuals under Motor task. On y-axis of the plot
we have labeled the individuals with multiple change points and on x-axis we have time points. Blue
lines denote the individual specific change points.

overfitting. Table 4 provides the WAIC values for ADNI dataset with respect to the independence

model (1), hierarchical covariance model (5) and the change point model (8) respectively. The

WAIC values are lowest in the case of hierarchical covariance model which reaffirms the lacks of

change points in resting state fMRI dataset. Higher WAIC values for the hierarchical change-point

model suggests overfitting from a more complex model where the data do not have a changepoint.

Model SN HC

Independence Model 80.32 76.71

Hierarchical Covariance Model 49.07 44.63

Hierarchical Change-point Model 68.57 61.96

Table 4: WAIC values for ADNI dataset with respect to three models which are defined in (1), (5)
and (8) respectively. Reported WAIC values are in scale of 102.

6 Model Validation

In the following, we first consider an adhoc graphical summary measure of the posterior to justify

the extension to hierarchical covariance model from the independence model for the HCP dataset.

The exploratory analyses in Figures 17 and 18 were conducted to attest to two aspects of our

hierarchical covariance model, namely i) using subject specific Di and variance components, and ii)

using a common semi-orthogonal matrix V across different subjects. A formal model comparison is

done later using the WAIC (Gelman et al., 2014) to provide more support to our visual illustration

in Figures 17 and 18.

Figure 17 shows the variation of the posterior estimate of the maximum eigenvalue and σ2
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across the individuals, where data for each individual is fitted using the independence model on

the 26 time points. The density plot is obtained by smoothing posterior estimates across the

individuals. As clearly seen, there is a substantial variability in both the variance component and

the maximum eigenvalue which prompted us to consider individual specific σ2
i and eigenvalues Di

for the hierarchical covariance model.

Another important modeling assumption in (5) that requires empirical justification is the use

of common semi-orthogonal matrix V across all the individuals as opposed to having individual

specific semi-orthogonal matrices in the independence model. In the following, we develop a simple

diagnostic to this effect. First we fit the independence model separately for each individual and

(a) (b)

Figure 17: Density plots of the estimated maximum eigenvalue (17a) and σ2 (17b) across individuals
obtained from fitting the independence model separately for each individual in the HPC dataset.

for each i we calculate the Karcher mean (Marks, 2012) of posterior samples of {Vi}ni=1 to obtain

individual specific posterior estimate of the semi-orthogonal matrices, denoted {V̂ 1
i }ni=1. For each

i, variability of the estimate of the semi-orthogonal matrix is measured as d(V̂ 1
i , V̄ ) where V̄ =

Karcher mean of {V̂ 1
i }ni=1 and d(U,W ) =|| PU − PW || where PU = UUT. In Figure 18, “Different

V” shows the histogram of {d(V̂ 1
i , V̄ )}ni=1 describing the variability for the individual specific semi-

orthogonal matrices. We generated data from (1) with individual specific Ωi set as V̄ D̂iV̄
T + σ̂2

i I

for all individuals i = 1, . . . , n where D̂i and σ̂i are the individual specific posterior estimates from

the independence model. We then refit the independence model to this new dataset and acquired

individual specific posterior estimates of the semi-orthogonal matrices = {V̂ 2
i }ni=1. Variability

of these semi-orthogonal matrices is measured as d(V̂ 2
i , V̄ ) for each i(= 1, . . . , n). “Same V” in

Figure 18 denotes the histogram of {d(V̂ 2
i , V̄ )}ni=1. Figure 18 clearly indicates a reduction in the

variability of semi-orthogonal matrices if only a single semi-orthogonal matrix is considered across

all individuals.

After fitting a complex Bayesian model, it is important to compare its predictive accuracy with

other models, both simple and complex (Geisser and Eddy, 1979; Hoeting et al., 1999; Vehtari
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Figure 18: “Different V” indicates the variation in Vis which are obtained from fitting independence
model separately for each individual and measured the deviation of Vis from V̄ which is karcher mean
of individual specific Vis. Later we have simulated a datum with V̄ , estimated D̃ and estimated
σ2 and measured the variation in a similar fashion which is represented with “Same V ”. Here
deviations are measured as d(U,W ) =|| PU − PW || where PU = UUT.

and Ojanen, 2012). Cross-validation and information criteria are two approaches to estimate out-

of-sample predictive accuracy using within-sample fits. The deviance information criterion (DIC)

(Spiegelhalter et al., 2002) is a generalization of the Akaike information criterion (AIC) (Akaike,

1998) for hierarchical settings. DIC has gained in popularity in recent years, in part through its

implementation in the graphical modeling package BUGS, but it is known to suffer from issues from

not being fully Bayesian. The Watanabe-Akaike information criterion (WAIC) (Watanabe, 2010)

can be viewed as an improvement on the deviance information criterion (DIC) for Bayesian models.

In this article, we use WAIC to compare the Independence model, the hierarchical covariance

model and the its extension to detect changepoints. Computation time for the WAIC is negligible

compared to the cost of fitting the model and obtaining posterior draws. The WAIC values suggest

Model WAIC

Independence Model 37.7500

Hierarchical Covariance Model 20.1703

Hierarchical Change-point Model 19.6739

Table 5: WAIC values for three models which are defined in (1), (5) and (8) respectively for HCP
dataset under motor task with fitted rank value 5. Reported WAIC values are in scale of 104.

progressively better fits as we move from the independence model to the most complex change

point model.
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7 Discussion

To discover patterns within the connectivity matrix of human brain as subjects perform specific

tasks, we start with a simple Wishart distribution with an approximate low rank structure on the

mean for modeling the covariance valued data. The methodology allows straightforward extension

to a hierarchical model of multiple subjects where covariance valued time series is available for each

subject. Another important extension is to develop a method for detecting a single change point in

the covariance time series. Applying the methodology to the HCP data for the motor task reveals

that the change point is associated with a particular regime switch of the experimental design.

Also, the application to the resting state individuals in the ADNI study does not reveal any change

point, which is in accordance with the expert opinions.

Another interesting application related to the HCP dataset is where the subjects are performing

psychometric tasks and the goal is to understand how the connectivity evolves over time and whether

a particular pattern in the time series motif is associated with the subjects “intelligence” or mental

ability. In this case, the goal is to understand how the connectivity changes with time and it is

important to allow more complex time varying structure in the evolution of the covariance matrix.

Such applications also call for development of joint model of the mental ability scores and the

connectivity matrices and is an interesting topic for future research.

For simplicity, we focused on a single Wishart distribution as a model for the covariance value

data. A more flexible alternative beyond the Wishart family is to consider a mixture of Wishart

distributions, particularly to allow for departures that are not captured by a single scale parameter.

However, this comes with an additional burden of identifying and interpreting the component

specific mean parameters that are required to be properly regularized to get a meaningful inference.
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In Appendix A, we explore a dynamic extension of our hierarchical change point model (8).

Appendix B contains sensitivity analysis for the hierarchical change point model (8) and some

additional simulations to study robustness. Appendix C contains results for the gambling task for

the HCP data. In Appendix D, we validate our assumption of considering φ = p + 1. Appendix

E & F contain details of posterior computation under the independence & hierarchical models

respectively.

A Dynamic Change Point Model

In our current change-point estimation framework, the observational units before and after the

change-point are assumed to be independent and identically distributed. A dynamic extension of

our model is certainty interesting to incorporate the dependence across the time-points. To that

end, we explore an auto-regressive Wishart process on the subject specific loadings. This is studied

under the hierarchical change point model for one subject with a single change point:

Sit ∼W (φ1, φ
−1
1 Ω

(t)
1i

), Ω
(t)
1i

= V1D
(t)
1i
V T

1 + σ2
1iIp, t = 1, . . . , ci ,

Sit ∼W (φ2, φ
−1
2 Ω

(t)
2i

), Ω
(t)
2i

= V2D
(t)
2i
V T

2 + σ2
2iIp, t = ci + 1, . . . , T.

(11)

We use the same orthogonal factor model type decomposition on Ω at each time point of an

individual. As a parsimonious model for the time dependent covariance matrices, the orthogonal

matrix V is held constant with subject specific time varying process for the loadings D
(t)
i and

subject specific variance components. For computational convenience, we consider D̃
(t)
i = D

(t)
i /σ2

which are assumed to evolve following an auto-regressive process:

log d̃
(t)
1ih

= ρ1 log d̃
(t−1)
1ih

+ ε
(t)
1ih
, t = 2, . . . , ci

log d̃
(t)
2ih

= ρ2 log d̃
(t−1)
2ih

+ ε
(t)
2ih
, t = ci + 2, . . . , T

 h = 1, . . . , r∗. (12)
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The diagonal elements at the first time point are shrunk using global and local shrinkage:

log d̃
(1)
1ih

= log λ
(1)
1ih

+ log τ
(1)
1i

log d̃
(ci+1)
2ih

= log λ
(ci+1)
2ih

+ log τ
(ci+1)
2i

.
(13)

Here τ
(1)
1i

, τ
(ci+1)
2i

are the global shrinkage parameters while the λ
(1)
ih , λ

(ci+1)
2ih

parameters allow for

coordinate specific deviations. We place independent half-Cauchy priors on the local parameters

and half-Cauchy prior truncated to (0, 1) on the global parameters. Also, ε
(t)
1ih
∼ N(0, v1) and

ε
(t)
2ih
∼ N(0, v2) with v1, v2

iid.∼ Gamma(1/2,2).

We detected change points of 62 individuals from the dynamic change point model which is

provided in Figure A.1. There are indeed certain change points which are detected by both (8) and

(11). For example, the change points for individual 66, 133 and 173 are detected at 24th, 23rd and

10th time point using both the models. Although the specific dynamic framework can be extended

to a full-blown dynamic model, initial indications of the WAIC values suggest that it may not be

a good fit for the current dataset. We leave this as a topic for future research.

Figure A.1: Detected change points for different individuals under Motor task from dynamic change
point model (11). On both sides of the y-axis of the plot we have labeled the individuals. Blue lines
denote the individual specific change points.

B Sensitivity and robustness analysis of the hierarchical change

point model

We considered different values of the fitted rank (r∗ = 5, 6, 7, 8) and ran the hierarchical change

point model (8) on the HCP dataset under the Motor task to check the sensitivity of the results

with respect to the fitted rank. The findings are provided in Table A1. We obtained similar results

for 26 individuals from different values of fitted ranks which are provided in the last column of

Table A1. Next we considered five different initializations for the model parameters in (8) and
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fixed r∗ = 5. Detected change points with the corresponding individuals are shown in Table A2

and the frequently appeared 34 individuals for all those 5 settings are provided in last column of the

table. The description of these initial values are provided next. For setting 1, we set {σ2
1i
, σ2

2i
}ni=1

to be 2.5, {τ1i , τ2i}ni=1 = 0.1 and {λ1i , λ2i}ni=1 = 2.5. In case of setting 2, we consider {σ2
1i
, σ2

2i
}ni=1

to be 1.75, {λ1i , λ2i}ni=1 = 2.25 and values for all values of τ were same with setting 1. Values of

{σ2
1i
, σ2

2i
}ni=1 was set to be 1.5, {λ1i , λ2i}ni=1 = 3 and same value for all τ parameters for setting 3.

In setting 4, we have {σ2
1i
, σ2

2i
}ni=1 to be 2.25, {λ1i , λ2i}ni=1 = 3.5 and {τ1i , τ2i}ni=1 = 0.2. In case of

setting 5, we consider {σ2
1i
, σ2

2i
}ni=1 to be 2.5, {λ1i , λ2i}ni=1 = 3.25 and {τ1i , τ2i}ni=1 = 0.25.

We conducted another experiment to test the robustness of the change point model when the

data generating distribution indeed has correlation across time points. We simulated data from

the time varying change point model (11) consisting of 10 subjects with 26 time points. All

the subjects have individual specific change points which are generated uniformly in the interval

{2, . . . , 25}. For clarity, any parameter with subscript “1” correspond to the pre-change-point

regime (Group 1) and the ones with subscript “2” corresponds to the post-change-point (Group

2). Individual specific variances {σ2
01i
}ni=1 and {σ2

02i
}ni=1 are generated from uniform(0.25, 0.50).

Local parameters {λ(1)
1i
, λ

(ci+1)
2i

}ni=1 and global parameters {τ (1)
1i
, τ

(ci+1)
2i

}ni=1 are generated from half-

Cauchy distribution. {D(1)
01i
}ni=1 and {D(1)

02i
}ni=1 are generated by following equation (13). We use

AR(1) process (12) to generate rest of the columns of D01 and D02. Figure B.1 shows that our

non-time varying model(8) model is able to detect the individual specific change points for 60%

cases even though the data is generated from the time varying hierarchical change point model.

Figure B.1: Individual specific change point estimates obtained from hierarchical change point model
(8) whereas the data is generated from time-varying hierarchical change point model (11).

C Case study for gambling task of HCP dataset

A detailed description of the gambling task corresponding to HCP is in Delgado et al. (2000). We

applied our hierarchical change point model on data which was scaled with subject specific minimum

eigen value. We are able to detect 70 individuals with change points under Gambling task. In Figure

C.1 we labeled the 70 individuals with their corresponding change points. Figure C.1a consists of
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r∗ = 5 r∗ = 6 r∗ = 7 r∗ = 8 Common Ind
Change Point Ind Change Points Ind Change Points Ind Change Points Ind Change Points Ind

23 11 10 13 10 13 23 11 10 13
10 13 24 15 24 15 10 13 23 15
23 15 18 56 18 56 23 15 18 56
18 56 24 66 24 66 18 56 24 66
24 66 21 69 21 69 24 66 8 99
25 90 25 90 25 90 21 69 23 108
8 99 8 99 3 93 23 82 23 118
23 108 22 108 25 101 25 90 20 129
23 118 24 118 25 108 8 99 23 133
20 129 20 129 20 129 25 101 13 147
23 133 23 133 23 133 22 108 7 165
13 147 13 147 13 147 23 118 19 177
18 165 18 165 7 165 21 122 22 201
10 173 19 179 10 173 20 129 25 220
19 179 22 201 19 179 23 133 23 240
17 201 25 211 22 201 13 147 10 257
25 220 25 220 25 220 7 165 25 277
23 240 23 240 23 240 10 173 21 329
10 257 10 257 10 257 18 177 18 333
25 270 25 277 25 270 19 179 22 400
9 274 18 333 9 274 22 201 11 405
25 277 25 335 25 277 25 220 25 414
21 329 23 380 21 329 20 224 20 420
18 333 25 383 18 333 17 225 22 467
25 335 22 400 25 383 2 240 19 482
23 380 11 405 22 400 10 257 23 490
23 381 25 414 11 405 25 264
22 400 18 420 25 414 24 267
11 405 22 467 28 420 25 270
25 414 19 482 10 427 9 274
18 420 23 490 22 467 25 277
10 427 19 482 6 291
13 439 23 490 21 329
22 467 18 333
19 482 23 380
23 490 23 381

14 399
22 400
11 405
25 414
18 420
18 427
22 467
19 482
23 490

Table A1: Detected change points and corresponding individuals from the hierarchical change point
model(8) for different values of fitted rank.

(a) (b)

Figure B.2: Common change points and corresponding individuals detected from the hierarchical
change point model(8) for different values of fitted rank (B.2a) and initial setting (B.2b).
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Setting 1 Setting 2 Setting 3 Setting 4 Setting 5 Common Ind
Change Point Ind Change Points Ind Change Points Ind Change Points Ind Change Points Ind Change Points Ind

23 11 23 11 23 11 23 11 23 11 23 11
23 15 10 13 10 13 10 13 10 13 10 13
18 56 23 15 23 15 23 15 23 15 23 15
24 66 18 56 18 56 19 23 18 56 18 56
21 69 24 66 24 66 19 32 24 66 24 66
25 90 25 90 25 90 18 56 25 90 25 90
8 99 8 99 8 99 24 66 8 99 8 99
23 108 23 108 23 108 21 69 24 108 23 108
23 118 23 118 23 118 25 90 23 118 23 118
20 129 20 129 20 129 8 99 20 129 20 129
23 133 23 133 23 133 25 101 23 133 23 133
13 147 13 147 13 147 23 108 13 147 13 147
18 165 7 165 7 165 23 118 18 165 18 165
10 173 10 173 10 173 20 129 10 173 10 173
19 179 19 179 19 179 23 133 19 179 19 179
17 201 17 201 17 201 25 139 17 201 17 201
25 220 25 220 25 220 13 147 25 220 25 220
23 240 23 240 23 240 7 165 23 240 23 240
10 257 10 257 10 257 10 173 10 257 10 257
9 274 25 270 9 274 19 179 25 270 9 274
25 277 9 274 25 277 22 201 9 274 25 277
21 329 25 277 21 329 25 220 25 277 21 329
18 333 21 329 18 333 23 240 21 329 18 333
25 335 18 333 25 335 10 257 18 333 25 335
23 380 25 335 22 400 25 270 25 335 23 380
23 381 23 380 25 414 9 274 23 380 22 400
22 400 25 381 18 420 25 277 23 381 11 405
11 405 22 400 13 439 21 329 22 400 25 414
25 414 11 405 22 467 18 333 11 405 18 420
18 420 25 414 19 482 25 335 25 414 10 427
24 427 18 420 23 490 23 380 18 420 13 439
13 439 10 427 23 381 10 427 22 467
22 467 13 439 14 399 13 439 19 482
19 482 22 467 22 400 22 467 23 490
23 490 19 482 11 405 19 482

23 490 25 414 23 490
18 420
10 427
13 439
22 467
19 482
23 490

Table A2: Detected change points and corresponding individuals from the hierarchical change point
model(8) for different initial setting.

70 individuals with their most prominent change point detected through the hierarchical model.

Figure C.1b shows the overall pattern of the most prominent change points across all the individuals.

The histogram in Figure C.1b shows that more than 10% individuals have change points at 21.

Next we extended our study to detect multiple change points under gambling task. We applied

the methodology discussed in section 5.2 on individuals under gambling task and detected multiple

change points for different individuals. In Figure C.2, we listed the individuals with at least two

change points and their corresponding change points.

D Validation of the value of φ

In this section, we validate the choice of φ based on WAIC. Under the same simulation setting as

in Section 3.1.1, the data is generated from the independence model (1) by setting the true values

of φ in {11, 15, 20}. The fitted values of φ are varied over a range {11, . . . , 20} and corresponding

WAIC values are reported in Table (A3). Irrespective of the true value of φ, the lowest WAIC value

is obtained when φ = 11 ∈ {11, . . . , 20}. For the HCP data analysis, we compare the WAIC values
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(a) (b)

Figure C.1: Right panel shows heat map of binary matrix consisting of 1 to (i, j)th position which
corresponds to ith individual and jth (j = 1, . . . , 23) time point which is a change point for the
corresponding individual and 0 otherwise. Individuals with one change point under gambling task
are labeled on y-axis. In left panel we have histogram of change points under gambling task which
shows most of the individuals have change point at 21.

Figure C.2: Multiple change points for different individuals under Gambling task. On y-axis of the
plot we have labeled the individuals with multiple change points and on x-axis we have time points.
Blue lines denote the individual specific change points.

from the hierarchical change point model (8) for several values of φ as shown in Table (A4). The

lowest WAIC is attained at φ = 11.

E Posterior Computation under Independence Model

We first record two useful identities. We have

|Ω| = |σ2Ip + V DV T| = (σ2)p
∣∣∣∣Ip + V D

σ2V
T

∣∣∣∣ = (σ2)p|Ip + V D̃V T|

= (σ2)p|Ir∗ + (V TV )D̃| = (σ2)p
r∗∏
j=1

(
1 +

dj
σ2

)
= (σ2)p

r∗∏
j=1

(1 + d̃j) ,
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True φ = 11 True φ = 15 True φ = 20

φ WAIC φ WAIC φ WAIC φ WAIC φ WAIC φ WAIC

11 223980.5 16 982594.9 11 224046.5 16 891307.5 11 227826.6 16 832607.7

12 350710.9 17 1161531.7 12 331893.7 17 1052557.1 12 326247.8 17 980285.6

13 492837.7 18 1346223.5 13 454632.8 18 1219633.2 13 437647.2 18 1133538.3

14 646175.0 19 1535622.7 14 590192.5 19 1391076.2 14 559376.4 19 1291091.1

15 810530.4 20 1729035.9 15 736743.1 20 1566453.2 15 692127.0 20 1452505.0

Table A3: WAIC values obtained from the independence model (1) with true values of φ =
{11, 15, 20} and fitted values are varied over a range {11, . . . , 20}.

Real Data Analysis

φ WAIC φ WAIC

11 196739 16 257329

12 209801 17 271796

13 218313 18 289761

14 233022 19 297537

15 242873 20 312590

Table A4: WAIC values obtained by implementing hierarchical change point model on the HCP
dataset with different values of φ ∈ {11, . . . , 20}.

where D̃ = D/σ2. Moreover,

Ω−1 = (σ2Ip + V DV T)−1 = σ−2

(
Ip + V D

σ2V
T

)−1

= σ−2(Ip + V D̃V T)−1

= σ−2{Ip − V (D̃−1 + V TV )−1V T} = σ−2{Ip − V (D̃−1 + Ir∗)
−1V T} = σ−2{Ip − V E−1V T} ,

where E = D̃−1 + Ir∗ .

• Likelihood under Independence Model: The joint likelihood of (V,D, σ2) is

L(V,D, σ2) = |Ω|−
Nφ
2
∏N
j=1 exp

{
− 1

2tr (Ω−1Sj)

}
= |Ω|−

Nφ
2 exp

{
− 1

2tr (Ω−1
∑N

j=1 Sj)

}
= |Ω|−

Nφ
2 exp

{
− 1

2tr (Ω−1SN )

}
= (σ2)−

Nφp
2
∏r∗

j=1

(
1 +

dj
σ2

)−Nφ
2

exp

[
− 1

2σ2 tr {(Ip − V (σ2D−1 + Ir∗)
−1V T)SN}

]
,

where SN =

N∑
j=1

Sj .

With the transformation D̃ = D/σ2, the joint likelihood of (V, D̃, σ2) is

L(V, D̃, σ2) = (σ2)−
Nφp

2
+1∏r∗

j=1(1 + d̃j)
−Nφ

2 exp

[
− 1

2σ2 tr {(Ip − V (D̃−1 + Ir∗)
−1V T)SN}

]
.

We now describe the full-conditional distributions that are used to implement a Metropolis

within Gibbs sampler to sample from the joint posterior of (V, D̃, σ2). We use the notation
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[θ | −] to denote the full conditional distribution of a parameter.

• Full conditional of V:

We have,

[V | −] ∝ exp

[
1

2σ2 tr {V E−1V TSN}
]

= exp

[
1

2σ2 tr {E−1V TSNV }
]
.

This is a Bingham(SN , E−1/2σ2) distribution, which can be sampled using the package

Rstiefel in R.

• Full conditional of βh:

We decomposed log d̃h = µ + βh and considered M = V TSNV and a transformation wh =

(1 + βhµ)−1 for h = 1, . . . , r∗. The full-conditional of wh is give by

[wh | −] ∝ w
Nφ
2
−2

h exp

(
− φMhh

2σ2 wh

)
1

µ2+

(
1−wh
wh

)2 ,

To sample from the above, we consider a slice-sampling scheme. Specifically, augment a latent

variable uh such that the joint distribution of (wh, uh) is

[wh, uh | −] ∝ w
Nφ
2
−2

h exp

(
− φMhh

2σ2 wh

)
I

[
0 < uh <

1

µ2+

(
1−wh
wh

)2

]
.

It is clearly seen that the marginal distribution of wh is preserved under this joint distribution.

We then successively sample from the conditionals [uh | wh,−] and [wh | uh,−]. We have

[uh | wh,−] ∼ Uniform[0, {µ2 + ((1− wh)/wh)2}−1] ,

[wh | uh,−] ∼ Gamma(shape= (Nφ/2)−1, rate = φMhh/2σ
2)I[wh > {1+

√
(1/uh)− µ2}−1].

• Full conditional of µ:

The full conditional of µ is

[µ | −] ∝
r∗∏
j=1

(1 + βh exp(µ))−
Nφ
2 exp

[ r∗∑
j=1

ch(1 +
1

βh exp(µ)
)−1

]
exp(µ)

1 + exp(2µ)
.

where ch = φMhh/(2σ
2). We use a Metropolis–Hastings step to sample µ using a normal

random-walk proposal as µ∗ ∼ N(µ, s2) with standard deviation s = 0.1. We accept µ∗ with

probability min{α(µ, µ∗), 1} where

α(µ, µ∗) =
Π(µ∗ | −)

Π(µ | −)
.

• Full conditional of σ2:

[σ2 | −] ∝ (σ2)−
Nφp

2
+1 exp

[
− 1

2σ2 tr {QSN}
]
.(σ2)ασ−1 exp

(
− βσ

σ2

)
= (σ2)−

Nφp
2
−ασ exp

[
− 1

σ2

{
βσ + tr(QSN )

2

}]
,
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where Q = (V D̃V T + Ip)
−1V T. This implies

[σ2 | −] ∼ Inverse-Gamma(ασ − 1 +Npφ/2, βσ + tr (QSN )/2).

F Posterior Computation and Algorithm under Hierarchical Model

The joint likelihood of (V,D, σ2) under the hierarchical covariance model (5) is

L(V,D, σ2)

=

[ n∏
i=1

T∏
t=1

|Ωi|−
φ
2 exp

{
− φ

2
tr (Ω−1

i Sit)

}]
=

n∏
i=1

|Ωi|−
Tφ
2 exp

{
− φ

2
tr (Ω−1

i

T∑
t=1

Sit)

}

=

[ n∏
i=1

{
(σ2
i )
− pTφ

2

r∗∏
j=1

(
1 +

dij
σ2
i

)−Tφ
2
}]

exp

{
− φ

2
tr

( n∑
i=1

σ−2
i {Ip − V (σ2

iD
−1
i + Ir∗)

−1V T}
T∑
t=1

Sit

)}
.

With the transformation D̃ = D/σ2, the joint likelihood of (V, D̃, σ2) is

L(V, D̃, σ2)

=

[ n∏
i=1

{
(σ2
i )
− pTφ

2
+1

r∗∏
j=1

(1 + d̃ij)
−Tφ

2

}]
exp

{
− φ

2
tr

( n∑
i=1

σ−2
i {Ip − V (D̃−1

i + Ir∗)
−1V T}

T∑
t=1

Sit

)}
.

Now we only describe detailed steps to derive the full-conditional of V. For the rest of the

parameters, we cycled through the subject specific full-conditionals which are similarly derived

following the posterior computation steps under the Independence model (1). We have

[V | −] ∝ exp

[
φ

2

n∑
i=1

tr

{
V
E−1
i

σ2
i

V T

T∑
t=1

Sit

}]
= exp

[
φ

2

n∑
i=1

tr

{
V
E−1
i

σ2
i

V TS∗i

}]
,

where S∗i =
T∑
t=1

Sit and Ei = (D̃−1
i + Ir∗). The detailed steps of the identity used in (6) are given

as (
V
φE−1

i

2σ2
i

V T

)
S∗i =

r∗∑
j=1

(vjv
T
j )

(
φ1S

∗
i

2eijσ2
i

)
,

n∑
i=1

(
V
φE−1

i

2σ2
i

V T

)
S∗i =

n∑
i=1

r∗∑
j=1

(vjv
T
j )

(
φS∗i

2eijσ2
i

)

=

r∗∑
j=1

(vjv
T
j )

n∑
i=1

(
φS∗i

2eijσ2
i

)
=

r∗∑
j=1

(vjv
T
j )Hj =

r∗∑
j=1

(vT
jHjvj).
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The full-conditional of V under the hierarchical covariance model (5) can thus be expressed as

[V | −] ∝ exp

[ r∗∑
j=1

vT
jHjvj

]
=

r∗∏
j=1

exp(vT
jHjvj) where Hj =

n∑
i=1

(
φS∗i

2eijσ2
i

)
.

To sample from the above, we follow the steps in §3.3 of Hoff (2009b) and write V = {V[,1], V[,−1]} =

{Nz, V[,−1]} with ‖z‖ = 1. Here, N is an p× (r∗ − 1) orthonormal basis for the null space of V[,−1]

and z is expressed as z = NTV[,1] because NTN = I. The conditional density of z | V[,−1] is derived

as in Hoff (2009b) as

p(z | V[,−1]) ∝ exp(zTNTHjNz) = exp(zTH̃jz).

We iterate through the steps 1–4 for each j ∈ {1, . . . , r∗} to obtain samples from the density (6):

1) N = null space of V[,−j] and zj = NTV[,j].

2) H̃j = NTHjN .

3) Sample zj from a vector Bingham(H̃j) density using the package rsteifel (Hoff, 2013).

4) Set vj = Nzj .

Next, we outline the full conditionals of the time points under hierarchical change point model

(8). Full conditional updates of the rest of the parameters are similar to full conditional under

hierarchical covariance model (5). We have

P (ci = k|−) =
Aki
T∑
k=1

Aki

, k = 1, . . . , T,

where Aki = (σ2
1i)
− pφ1k

2
+1

r1∏
j=1

(1 + d̃1ij )
−φ1k

2 exp

[
− φ1

2σ2
1i

tr {Q1iS
′
1i}
]
×

(σ2
2i)
− pφ2(T−k)

2
+1

r2∏
j=1

(1 + d̃2ij )
−φ2(T−k)

2 exp

[
− φ2

2σ2
2i

tr {Q2iS
′
2i}
]
,

with S
′
1i =

k∑
t=1

Sit, S
′
2i =

T∑
t=k+1

Sit.
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