
Broadcasted Nonparametric Tensor Regression

Ya Zhou1,2, Raymond K. W. Wong2 and Kejun He1

1Institute of Statistics and Big Data, Renmin University of China
2Department of Statistics, Texas A&M University, College Station, USA

Abstract

We propose a novel broadcasting idea to model the nonlinearity in tensor regres-
sion non-parametrically. Unlike existing non-parametric tensor regression models, the
resulting model strikes a good balance between flexibility and interpretability. A penal-
ized estimation and corresponding algorithm are proposed. Our theoretical investigation,
which allows the dimensions of the tensor covariate to diverge, indicates that the proposed
estimation enjoys desirable convergence rate. Numerical experiments are conducted to
confirm the theoretical finding and show that the proposed model has advantage over
existing linear counterparts.

Keywords: Nonlinear regression; Tensor low rank; Polynomial splines; Region selection;
Elastic-net penalization.

1 Introduction

Recent years have witnessed a massive emergence of tensor data in many different areas,
such as clinical applications (Wang et al., 2014), computer vision (Lu et al., 2013), genomics
(Durham et al., 2018), neuroscience (Zhou et al., 2013), and recommender systems (Zhu
et al., 2018). Uncovering relationships among different variables from tensor data often lead
to enhanced understanding of scientific and engineering problems. One recent statistical
development under this setup is tensor regression (Zhou et al., 2013). In this work, we focus
on models that involve a tensor covariate X = (Xi1,i2,...,iD) ∈ Rp1×p2×···×pD of order D. In
passing, it is also worth mentioning that regression of a tensor response on a vector covariate
(e.g., Sun and Li, 2017; Li and Zhang, 2017; Hu et al., 2019) is also a popular research
direction.

Commonly seen are three major types of tensor regression, with different forms of response.
The first is scale-on-tensor regression, i.e., the response is a scalar (Zhou et al., 2013; Zhao
et al., 2014; Hou et al., 2015; Chen et al., 2019). Within this category, there are methods
that focus particularly on image covariates (Reiss and Ogden, 2010; Zhou and Li, 2014; Wang
et al., 2017; Kang et al., 2018). The second is vector-on-tensor regression, in which we have
a vector response (Miranda et al., 2018). The last one is tensor-on-tensor regression with a
tensor output (Hoff, 2015; Lock, 2018; Raskutti et al., 2019).

Most of the aforementioned models make a strong assumption that the tensor covariate
is able to predict the response through (known transformations of) linear functions. To
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date, very few work go beyond this limitation. On the application side, Zhao et al. (2014)
and Hou et al. (2015) used Gaussian processes to model potential nonlinear effects of tensor
covariates in video surveillance applications and neuroimaging analyses. Their methods are
geared for prediction, but lack for interpretability and theoretical justification. Moreover, the
performance of this approach heavily relies upon the choice of kernel function, which is not
easy to design for efficiently harnessing the tensor structure.

Another class of methods incorporates nonlinearity through a more explicit function space
by imposing low-rank structures on covariates. Kanagawa et al. (2016) considered a regression
model with respect to a rank-one tensor covariate, i.e., X = x1 ◦x2 ◦ · · · ◦xD, where ◦ denotes
the outer product and xd is a pd-dimensional vector, d = 1, . . . , D. Imaizumi and Hayashi
(2016) extended this work to a higher-rank tensor and proposed the model

m(X) =
R∑
r=1

Q∑
q=1

λq

D∏
d=1

gd,r(xq,d), (1)

where X is assumed to have a smallest CANDECOMP/PARAFAC (CP) decomposition

X =

Q∑
q=1

λqxq,1 ◦ xq,2 ◦ · · · ◦ xq,D,

where the Euclidean norm ‖xq,d‖2 = 1 and λQ ≥ λQ−1 ≥ · · · ≥ λ1 ≥ 0. When Q = 1, (1)
recovers the model of Kanagawa et al. (2016). In order to significantly reduce the number of
unknown functions to be estimated, a small value of Q is usually recommended. However, in
most cases, the tensor covariate is not exactly low-rank, and the rank of the covariate varies
from observation to observation within the data set. Furthermore, although the additive form
of (1) has reduced the model complexity, simultaneously estimatingDR unknown multivariate
functions, gd,r’s, remains a challenging problem. For example, given a 64× 64× 64 3D-image
covariate (p1 = p2 = p3 = 64), we need to estimate 3R unknown 64-dimensional functions,
which will lead to the curse of dimensionality. This aligns with a finding, from Imaizumi and
Hayashi (2016), that the asymptotic convergence rate of this model grows exponentially with
maxd pd. Finally, this model is difficult to interpret since the nonlinear modeling is directly
built upon the CP representation of the covariates, which may not be unique (Stegeman and
Sidiropoulos, 2007).

Therefore, although these existing nonlinear models demonstrate successes in certain ap-
plications, they suffer from the curse of dimensionality and possess weak interpretability. In
this article, we propose an alternative that addresses both of these issues. Our proposed model
extends the low-rank tensor linear model developed by Zhou et al. (2013), which we briefly
describe as follows. Given a vector covariate z ∈ Rp0 , a tensor covariate X ∈ Rp1×p2×···×pD ,
and a response variable y ∈ Y ⊆ R, Zhou et al. (2013) proposed a generalized tensor linear
model through a predetermined link function g

g{E(y|z,X)} = ν + γᵀz + 〈B,X〉,

where ν ∈ R, γ ∈ Rp0 , B ∈ Rp1×p2×···×pD are unknown parameters, and 〈·, ·〉 denotes the
componentwise inner product, i.e., 〈B,X〉 =

∑
i1,...,iD

Bi1,...,iDXi1,...,iD . In particular, the
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coefficient tensor B is assumed to admit a CP decomposition

B =
R∑
r=1

βr,1 ◦ βr,2 ◦ · · · ◦ βr,D,

where βr,d ∈ Rpd and R is the CP rank. Combined with sparsity-inducing regularization,
Zhou et al. (2013) and Zhou and Li (2014) showed that low-rank coefficient tensor B can be
used to identify the regions (entries) of X that are relevant to predict the response variable.

In many real-world applications, entries within some regions of the tensor (especially
images) share similar effects due to certain spatial structures. For examples, Zhou et al.
(2013) and Miranda et al. (2018) both provided evidences that brains demonstrate spatially
clustered effects on certain diseases. Motivated by these observations and the possibility of
nonlinear effects, we propose to “broadcast" similar nonlinear relationships to different entries
of the tensor covariate. On a high-level, we model the nonlinear effects by uni-dimensional
nonparametric functions, which are supposed to be applied to an individual entry. These
uni-dimensional functions are then shared by every entry to indicate the clustered effect. We
call this operation of distributing a uni-dimensional function to all entries “broadcasting".
Additional scaling coefficients are used to linearly scale the effects of the uni-dimensional
functions. Through regularizing these scaling coefficients, we are able to restrict the effects
of certain uni-dimensional functions to smaller regions. As shown by Zhou et al. (2013) and
Zhou and Li (2014), Lasso-type regularization alone may result in poor performance in re-
gion selection, while an additional low-rank constraint/regularization produce more successful
results. Therefore we also restrict the scaling coefficient to be low-rank. Combined with mul-
tiple broadcasting, the proposed model can produce reasonably complex and interpretable
structures, as shown in Section 2.2.

Within the proposed model, all aforementioned ideas are integrated into a (penalized) least
squares framework. We develop an alternative updating algorithm as well as the asymptotic
rates of convergence for the proposed estimations. Our theory includes tensor linear model
(Zhou et al., 2013) as a special case. Unlike Zhou et al. (2013), ours is of high-dimensional
nature, which allows p1, . . . , pD to diverge with the sample size. We believe this asymptotic
framework is more relevant to many applications, where the data, such as images, involve
large values of pj ’s as compared to the sample size. To construct the asymptotic analysis,
we have provided a novel restricted eigenvalue result. Through a real data example, we
demonstrate the power of the proposed broadcasted nonparametric tensor regression. Overall,
the proposed method timely responds to a number of growing needs of modeling nonlinearity
with interpretable models and rigorous theoretical developments for tensor data.

The rest of this paper is organized as follows. Section 2 introduces the broadcasted
nonparametric model. The proposed estimation method with the computational algorithm
and the corresponding theoretical results are respectively presented in Sections 3 and 4. The
practical performance of the proposed method illustrated via both a simulation study and a
real data application can be found in Section 5. The main contributions of this paper are
summarized in Section 6 with some concluding remarks. Technical details are provided in a
separate online supplemental document.
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2 Model

Consider a tensor covariate X ∈ X := {(Ai1,...,iD)p1,...,pDi1,...,iD=1 : Ai1,...,iD ∈ I}, where I is a com-
pact subset of R. Unless otherwise specified, we assume I = [0, 1] without loss of generality.
Throughout this paper, we focus on the general model

y = m(X) + ε, (2)

where m : X → R is an unknown regression function of interest and ε is a random error with
mean zero. The observed data {(yi,Xi)}ni=1 are modeled as i.i.d. copies of (y,X). In this
section, we propose an interpretable model for the regression function m(·).

2.1 Common nonparametric strategies: curse of dimensionality

As discussed in Section 1, existing work of nonparametric tensor regression is not only lacking
in interpretability but also suffering from a slow rate of convergence due to the curse of dimen-
sionality. This issue of dimensionality also occurs if one adopts other common nonparametric
regression models, such as additive models, by directly flattening the tensor covariate into
a vector. To relate with the standard nonparametric regression methods, we briefly discuss
them here, and highlight the issue of dimensionality, which motivates the proposed model in
Section 2.2.

One of the most general models for the regression function m(·) is an unstructured
(smooth) mapping from X to R. Despite its flexibility, this model suffers heavily from high
dimensionality. For a typical 64 × 64 × 64 image, we are facing a nonparametric estimation
of a function with dimension 643, which is generally impractical.

A common alternative in the literature of nonparametric regression is an additive form of
the regression function (Stone, 1985; Hastie and Tibshirani, 1990; Wood, 2017), i.e.,

m(X) =
∑

i1,i2,··· ,iD

mi1i2···iD(Xi1i2···iD),

where mi1i2···iD ’s are unknown uni-dimensional functions. This model however needs to si-
multaneously estimate s =

∏D
d=1 pd uni-dimensional functions, in which consistent estimation

is generally impossible for s ≥ n. In this case, the sparsity assumption (Lin et al., 2006; Meier
et al., 2009; Ravikumar et al., 2009; Huang et al., 2010; Raskutti et al., 2012; Fan et al., 2011;
Chen et al., 2018) could help obtain consistent estimation of the regression function. Never-
theless, general sparse estimators, when applied to a vectorized tensor covariate, would ignore
the potential tensor structure and might result in large bias, especially when the sample size
n is much smaller than s.

Another common modeling is the single index model (Ichimura, 1993; Horowitz and Här-
dle, 1996), in the sense that

m(X) = g

 ∑
i1,...,iD

ai1,i2,...,iDXi1,i2,...,iD

 ,

where g is an unknown uni-dimensional function and ai1,i2,...,iD ’s are s unknown weight pa-
rameters. Although there is only one uni-dimensional function to be estimated, this model
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involves abundant number of weight parameters, sometimes larger than the sample size. One
could also impose sparsity assumption on the weight parameters. The readers are referred
to Alquier and Biau (2013), Radchenko (2015), and references therein for more details on
this approach. However, similar issue of ignoring tensor structures would also show up. Such
problem would be aggravated in more complicated index models such as the additive index
model and multiple indices model.

We propose a novel and economical model which makes use of the tensor structure. Our
model is closely related to the additive models, but has overcome the aforementioned problems.

2.2 Low-rank modeling with broadcasting

As mentioned above, the additive models involve too many functions. A simple remedy is to
restrict all entries to share the same function:

m(X) =
1

s

∑
i1,i2,··· ,iD

f(Xi1i2···iD),

where f is a uni-dimensional function residing in a function class H to be specified later,
and the scaling s−1 is introduced to match with our proposed model (3). In other words, we
broadcast1 the same function f to every entry. We formally define the broadcasting operator
B : H×X → Rp1×···×pD by

(B(f,X))i1i2...iD = f(Xi1i2...iD), for all i1, . . . , iD.

Figure 1 depicts an example of the broadcasting operation. In many real life applications, en-
tries within some regions of the tensor (especially images) share similar effects due to certain
spatial structures such as a spatially clustered effect. For instance, Zhou et al. (2013) showed
that voxels within two brain subregions have similar linkages with attention deficit hyper-
activity disorder. Miranda et al. (2018) demonstrated that voxels within several subregions
of the brain have a spatially clustered effect on Alzheimer’s disease. Hence, broadcasting a
nonlinear relationship (with the response) is a well-motivated modeling strategy. But the
assumption that every entry has the same nonlinear effect on the response is very restrictive.
Specifically, in many image data, there are usually only one or a few clusters of entries that
are related to the response. Therefore, we move beyond a simple broadcasting structure to
achieve more adaptive modeling.

f( ) f( ) f( ) f( )

f( ) f( ) f( ) f( )

f( ) f( ) f( ) f( )

f( ) f( ) f( ) f( )

B f

( )
, =

X

Figure 1: An example of broadcasting operation for a tensor covariate of order 2, i.e., D = 2.
Different colors represent different possible values that the tensor entries may take.

For any two tensors A = (Ai1,...,iD) and B = (Bi1,...,iD) of the same dimensions, we define
〈A,B〉 =

∑
i1,...,iD

Ai1,...,iDBi1,...,iD . Motivated by Zhou et al. (2013), we use the (low-rank)

1A term widely used for similar operations in programming languages such as Python.
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tensor structure to discover important regions of the tensor so as to broadcast a nonparametric
modeling on such regions. We propose the following broadcasted nonparametric regression
model

m(X) = ν +
1

s

R∑
r=1

〈βr,1 ◦ βr,2 ◦ · · · ◦ βr,D, Fr(X)〉 , (3)

where ν ∈ R, βr,d ∈ Rpd , and Fr(X) = B(fr,X). Here fr ∈ H admits a nonparametric
modeling specified by the (infinite-dimensional) function class H. Following the convention
(e.g., Stone, 1985), H is assumed to be a class of smooth functions with some Hölder condition
with details specified in Section 4. In this model, there are R different components, each of
which is composed of a uni-dimensional function fr to be broadcasted, and a rank-one scaling
(coefficient) tensor βr,1 ◦ · · · ◦ βr,D to linearly scale the effect across different entries. The
model is economical since these broadcasted functions are uni-dimensional and these scaling
tensors are of rank 1.

fr( ) fr( ) fr( ) fr( )

fr( ) fr( ) fr( ) fr( )

fr( ) fr( ) fr( ) fr( )

fr( ) fr( ) fr( ) fr( )

Fr

( )
, ,

〈 〉
=

〈 〉Broadcasting operation

Fr(X) = B(fr,X)

Rank-1 scaling

βr,1 βᵀ
r,2

Broadcasted

Fr(X)

Rank-1 scaling

βr,1 ◦ βr,2

Figure 2: An example of the r-th component in the broadcasted model (3) for D = 2, with sparsity
in scaling tensor. The white elements in βr,1, βr,2, and βr,1 ◦ βr,2 represent zero entries.

If an appropriate sparse estimation is imposed on the scaling tensors, a component can
be made specifically concentrated on a subregion of the tensor. We demonstrate the scaling
effect in Figure 2. Several components can be combined to characterize different nonlinear
effects adapted to different subregions. We give two simple examples of D = 2 depicted in
Figure 3, where the shaded regions correspond to nonzero entries in the corresponding scaling
tensors. In the left panel, there are two rank-one regions (shaded) with different nonlinear
functions; in the right panel, there is a rank-two region formed by two scaling tensors with a
shared nonlinear effect (f1 = f2).

f1

f2 f1 = f2

Figure 3: Examples of the broadcasted model (3) for D = 2.

Similar to the tensor linear model (Zhou et al., 2013), the parameterization in the proposed
model is unidentifiable, i.e., the broadcasted functions and scaling tensors are not uniquely
determined. For instance, one can multiply βr,1 by 10, and divide βr,2 by 10, while still
obtain the same m(·). Another example is a permutation of the components. However,
to understand the nonlinear effect of entries, only the identification of m(·) is needed and
thus such non-identifiability is in general not an issue. In particular, we are able to directly
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study the asymptotic behaviors of the estimations of m(·) in Section 4. For computation,
on the other hand, some of these identifiability issues lead to algorithmic instability and
so several restrictions are introduced in Section 3 to obtain an efficient algorithm. For a
complete discussion on parameter identification, we refer interested readers to Section C of the
supplementary material, where sufficient conditions similar to Kruskal’s uniqueness condition
(Kruskal, 1989) are provided.

3 The proposed estimator and its computation

3.1 Spline approximation and penalized estimation

The broadcasted functions fr, r = 1, . . . , R, will be approximated by B-spline functions of
order ζ, i.e.,

fr(x) ≈
K∑
k=1

αr,kbk(x), (4)

where b(x) = (b1(x), · · · , bK(x))ᵀ is a vector of B-spline basis functions and αr,k’s are the
corresponding spline coefficients. By writing αr = (αr,1, . . . , αr,K)ᵀ and ignoring the spline
approximation error, the regression function (3) can be modeled by

m(X) = ν +
1

s

R∑
r=1

〈βr,1 ◦ βr,2 ◦ · · · ◦ βr,D ◦αr,Φ(X)〉 , (5)

where Φ : X → Rp1×···×pD×K is defined by (Φ(X))i1,...,iD,k = bk(Xi1···iD). To separate out the
constant effect from fr’s, we impose the conditions

∫ 1
0 fr(x)dx = 0, r = 1, . . . , R, which lead

to ∫ 1

0

K∑
k=1

αr,kbk(x)dx = 0, r = 1, . . . , R. (6)

Let uk =
∫ 1

0 bk(x)dx. We consider the following optimization problem

arg min
ν,A

n∑
i=1

(
yi − ν −

1

s
〈A,Φ(Xi)〉

)2

s.t. A =

R∑
r=1

βr,1 ◦ βr,2 ◦ · · · ◦ βr,D ◦αr

K∑
k=1

αr,kuk = 0, r = 1, . . . , R,

(7)

and the estimated regression function as

m̂(X) = ν̂ +
1

s

〈
Â,Φ(X)

〉
,

where (Â, ν̂) is a solution of (7).
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Directly solving (7) is not computationally efficient since it involves too many linear con-
straints. To further simplify the optimization problem, we remove the constraints by using
an equivalent truncated power basis (Ruppert et al., 2003). We let {b̃k(x)}Kk=1 denote the
truncated power basis:

b̃1(x) = 1, b̃2(x) = x, . . . , b̃ζ(x) = xζ−1,

b̃ζ+1(x) = (x− ξ2)ζ−1
+ , . . . , b̃K(x) = (x− ξK−ζ+1)ζ−1

+ ,

where ζ and (ξ2, . . . , ξK−ζ+1) are the order and the interior knots of the aforementioned
B-spline. Using these basis functions, we consider the optimization

arg min
ν̃,Ã

n∑
i=1

(
yi − ν̃ −

1

s

〈
Ã, Φ̃(Xi)

〉)2

s.t. Ã =

R∑
r=1

βr,1 ◦ βr,2 ◦ · · · ◦ βr,D ◦ α̃r,
(8)

where Φ̃ : X → Rp1×...×pD×(K−1) is defined by (Φ̃(X))i1,...,iD,k = b̃k+1(Xi1···iD), k = 1, . . . ,K−
1, and α̃r ∈ RK−1 is the vector of coefficients. Compared with (7), the mean zero constraints
are removed by reducing one degree of freedom in the basis functions. Theorem 3 in Sec-
tion B.1 of the supplementary material shows that the optimization (8) results in the same
estimated regression function, i.e.,

m̂(X) = ν̃opt +
1

s

〈
Ãopt, Φ̃(X)

〉
, (9)

where (ν̃opt, Ãopt) is a solution of (8).
To improve estimation performance (when sample size is relatively small) as well as to

enhance interpretability, we add an additional regularization term to the optimization. In
particular, a penalized estimation is proposed by solving

arg min
ν̃,Ã

n∑
i=1

(
yi − ν̃ −

1

s

〈
Ã, Φ̃(Xi)

〉)2

+

R∑
r=1

D∑
d=1

pd∑
`=1

Pλ(βr,d,`)

s.t. Ã =

R∑
r=1

βr,1 ◦ βr,2 ◦ · · · ◦ βr,D ◦ α̃r

‖α̃r‖22 = 1, r = 1, . . . , R,

(10)

where βr,d,` is the `-th element of βr,d and Pλ(·) is the penalty function with tuning param-
eter λ. Corresponding estimated regression function m̂pen can be reconstructed similarly as
(9). Typical choices of sparsity-inducing penalty function, within the scope of linear regres-
sion, include the Lasso penalty (Tibshirani, 1996), the Smoothly Clipped Absolute Deviation
(SCAD) penalty (Fan and Li, 2001), the elastic-net penalty (Zou and Hastie, 2005), and the
minimax concave penalty (MCP, Zhang, 2010). In particular, the elastic net can deliver good
prediction performance when the predictors are correlated, which usually happens in neu-
roimaging data (Zhou and Li, 2014). To restrict the nonlinear effects to smaller regions, we
consider the elastic-net penalty

Pλ(βr,d,`) = λ1

{
1

2
(1− λ2)β2

r,d,` + λ2|βr,d,`|
}
,

8



where λ = (λ1, λ2) with λ1 ≥ 0 and λ2 ∈ [0, 1]. Note that the magnitudes of βr,1, . . . ,βr,D
and α̃r are not identified. Penalization on βr,d’s would enlarge α̃r. In the extreme settings
when λ2 = 0 (ridge penalty) or 1 (Lasso penalty), the penalization is completely offset by
enlarging α̃r, and becomes redundant. The unit-norm restrictions for α̃r’s are introduced to
prevent these scale issues.

3.2 Computational algorithm

We propose a scale-adjusted block-wise descent algorithm to solve (10). RecallBd = (β1,d, . . . ,βR,d),
d = 1, . . . , D. Analogously, we denote B̃D+1 = (α̃1, . . . , α̃R). For convenience, we let

θ = (ν̃,B1, . . . ,BD, B̃D+1),

and write the squared loss, the penalty, and the whole objective function as

L(θ) =
n∑
i=1

(
yi − ν̃ −

1

s

R∑
r=1

〈
βr,1 ◦ βr,2 ◦ · · · ◦ βr,D ◦ α̃r, Φ̃(Xi)

〉)2

,

G(θ) =
R∑
r=1

D∑
d=1

pd∑
`=1

Pλ(βr,d,`),

and LG(θ) = L(θ) +G(θ), respectively. Observe that

R∑
r=1

〈
βr,1 ◦ βr,2 ◦ · · · ◦ α̃r, Φ̃(X)

〉
=
〈
Bd, Φ̃(X)(d)B−d

〉
=
〈
vec{Φ̃(X)(d)B−d}, vec(Bd)

〉
,

where B−d = B1 � · · · � Bd−1 � Bd+1 � · · · � B̃D+1, vec(·) is a vectorization operator, �
denotes the Khatri–Rao product and Φ̃(X)(d) is the mode-dmatricization of tensor Φ̃(X) (e.g.,
Kolda and Bader, 2009). We can thus alternatively update Bd, d = 1, · · · , D, by the elastic-
net penalized linear regression (Zou and Hastie, 2005). As for B̃D+1, it can be relaxed to
a standard quadratically constrained quadratic program. Therefore, the dual ascent method
and second-order cone programming can be used for this block-wise updating.

Of special attention is the magnitude shift among βr,d’s for d = 1, · · · , D. As an example,
we can multiply βr,d1 by 10 and divide βr,d2 by 10, d1 6= d2, without changing the value of
the squared loss. This manipulation can, however, change the value of penalty term G(θ).
To improve the algorithmic convergence, we propose a rescaling strategy for the elastic-net
penalty. For r = 1, . . . , R, we solve the following optimization problem

arg min
ρr,1,...,ρr,D

D∑
d=1

{
1

2
(1− λ2)‖ρr,dβr,d‖22 + λ2‖ρr,dβr,d‖1

}

s.t.
D∏
d=1

ρr,d = 1 and ρr,d > 0

ρr,d = 1 if βr,d = 0,

(11)
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where ‖ · ‖1 is the `1-norm of a vector, and we use ρ̂r,dβr,d to replace βr,d at the end of each
iterative step of solving (10) (see Algorithm 1), where {ρ̂r,d : r = 1, . . . , R, d = 1, . . . , D} is
the minimizer of (11). This replacement step never increases the objective value (as shown in
Proposition 1 below). In particular, as described in Section B.2 of the supplementary material,
(11) can be written as a convex problem in an equivalent parametrization. For λ2 ∈ (0, 1), the
method of Lagrange multipliers and Newton’s method can be used to solve (11). While for
the special boundary cases, i.e., λ2 ∈ {0, 1}, we are able to obtain the closed form solutions

ρ̂r,d =


1

‖βr,d‖1

D∏
d=1

‖βr,d‖
1/D
1 , if λ2 = 1,

1

‖βr,d‖2

D∏
d=1

‖βr,d‖
1/D
2 , if λ2 = 0.

Proposition 1. Suppose Θ(θ) is the scale class (modulo the sign) of

θ = (ν̃,B1, . . . ,BD, B̃D+1)

up to scaling, i.e.,

Θ(θ) = {θρ :θρ = (ν̃,B1ρ1, . . . ,BDρD, B̃D+1),

ρd = diag(ρ1,d, . . . , ρR,d),

D∏
d=1

ρr,d = 1, ρr,d > 0},

where diag(ρ1,d, . . . , ρR,d) ∈ RR×R is a diagonal matrix with diagonal entries ρ1,d, . . . , ρR,d.
We write the solution of (11) as ρ̂r,d, r = 1, . . . R, d = 1, . . . , D. Let

θ̄ = (ν̃, B̄1, . . . , B̄D, B̃D+1),

where B̄d = (ρ̂1,dβ1,d, . . . , ρ̂R,dβR,d). Then

LG(θ̄) = min
θρ∈Θ(θ)

LG(θρ).

Furthermore, if βr,d 6= 0, r = 1, . . . , R, d = 1, . . . , D, then

LG(θ̄) < LG(θρ), ∀θρ ∈ Θ(θ), θρ 6= θ̄.

Proposition 1 shows that θ̄ is the unique minimizer over Θ(θ). This fixes the scaling
indeterminacy, improves the practical convergence property and thus enhances the numerical
performance. The numerical comparison between the algorithm with and without the rescaling
strategy is presented in Section 5. Besides, the convergence of Algorithm 1 is shown in
Proposition 2 and its proof is deferred to Section B.4 of the supplementary material.

Proposition 2. Assume that the set {θ : LG(θ) ≤ LG(θ(0))} is compact, λ1 > 0, λ2 < 1 and
the stationary points of LG(θ) are isolated. Then the sequence θ(t) generated by Algorithm I
converges to a stationary point of LG(θ).

Due to space constraint, the strategy for initializing the algorithm is presented in Section
D of the supplementary material. As for tuning parameter selection, cross-validation can be
adopted. However, it is computationally expensive. For simplicity, we adopt the validation
method in our numerical experiments.

10



Algorithm 1: Scale-adjusted block relaxation algorithm.

Input : θ(0) =
(
ν̃(0),B

(0)
1 , . . . ,B

(0)
D , B̃

(0)
D+1

)
, ε > 0 and t = 0.

repeat
for d from 1, . . . , D do

B
(t+1)
d = arg minBd

LG(ν̃(t),B
(t+1)
1 , . . . ,B

(t+1)
d−1 ,Bd,B

(t)
d+1, . . . ,B

(t)
D , B̃

(t)
D+1);

end
B̃

(t+1)
D+1 = arg minB̃D+1

LG(ν̃(t),B
(t+1)
1 , . . . ,B

(t+1)
D , B̃D+1);

ν̃(t+1) = arg minν̃ LG
(
ν̃,B

(t+1)
1 , . . . ,B

(t+1)
D , B̃

(t+1)
D+1

)
;

Replace B
(t+1)
d by

(
ρ̂1,dβ

(t+1)
1,d , . . . , ρ̂R,dβ

(t+1)
R,d

)
, where ρ̂(t+1)

r,d , r = 1, . . . , R,
d = 1, . . . , D, are obtained from (11);
t = t+ 1;

until −LG(θ(t+1)) + LG(θ(t)) ≤ ε.
Output: θ̂pen = θ(t).

4 Theoretical study

Throughout the theoretical analysis, we assume that the true regression function m0(X) has
the following form of representation

m0(X) = ν0 +
1

s

R0∑
r=1

〈β0r,1 ◦ . . . ◦ β0r,D, F0r(X)〉 ,

where F0r = B(f0r,X) with
∫ 1

0 f0r(x)dx = 0, f0r ∈ H, r = 1, . . . , R0, and H is the function
class specified in Assumption 3.

We use C and C with subscripts to represent generic constants that may change values
from line to line. In our analysis, we need the following regularity assumptions.

Assumption 1. The covariate tensor X ∈ [0, 1]p1×···×pD has a continuous probability density
function g, which is bounded away from zero and infinity on [0, 1]p1×···×pD , i.e., there exist
constants S1, S2 > 0 such that S1 ≤ g(x) ≤ S2 for all x ∈ [0, 1]p1×···×pD .

Before presenting the assumption related to the random error, we first give the definition
of sub-Gaussian random variable and its sub-Gaussian norm.

Definition 1 (sub-Gaussian random variable). We say that a random variable X is sub-
Gaussian if there exists a positive constant S such that

(E|X|p)1/p ≤ S√p, for all p ≥ 1.

The minimum value of S is the sub-Gaussian norm of X, denoted by ‖X‖ψ2.

Assumption 2. The vector of random errors, ε = (ε1, . . . , εn)ᵀ, has independent and identi-
cally distributed entries. Each εi is sub-Gaussian with mean 0 and sub-Gaussian norm σ <∞.

11



Assumption 3. The true broadcasted functions f0r ∈ H, r = 1, . . . , R0. Here H is the space
of functions from [0, 1] to R satisfying the Hölder condition of order ω, i.e.,

H =
{
g : ∃C ∈ (0,∞) s.t. |g(ι)(x1)− g(ι)(x2)| ≤ C|x1 − x2|ω, ∀ x1, x2 ∈ [0, 1]

}
,

where ι is a nonnegative integer and g(ι) is the ι-th derivative of g, such that ω ∈ (0, 1] and
τ = ι+ ω > 1/2.

Assumption 4. The order of the B-spline used in (4) satisfies ζ ≥ τ + 1
2 . We let 0 = ξ1 <

ξ2 < · · · < ξK−ζ+2 = 1 denote the knots of B-spline basis and assume that

hn = max
k=1,...,K−ζ+1

|ξk+1 − ξk| � K−1 and hn

/
min

k=1,...,K−ζ+1
|ξk+1 − ξk| ≤ C.

Assumptions 1, 3, and 4 are common in nonparametric regression models. In particular,
Assumptions 3 and 4 regularize the space where the true broadcasted functions lie in and
guarantee that they can be approximated well by B-spline functions. Indeed, a well-known
result based on these assumptions is that there exist α0,r = (α0r,1, . . . , α0r,K)ᵀ, r = 1, . . . , R,
such that ∥∥∥∥f0r −

K∑
k=1

α0r,kbk

∥∥∥∥
∞

= O(K−τ ), (12)

where the L∞-norm of a uni-dimensional function f is defined as ‖f‖∞ = supx |f(x)|. Al-
though we assume

∫ 1
0 f0r(x)dx = 0, Lemma A.6 (in the supplementary material) still implies

that there are α0,r, r = 1, . . . , R, satisfying (12) with

K∑
k=1

∫ 1

0
α0r,kbk(u)du = 0. (13)

Despite this mild difference in parameter identification, similar assumptions can be found
in Zhou et al. (1998) and Huang et al. (2010). Besides, the sub-Gaussianity condition in
Assumption 2 is now a standard tail condition of the error.

We present the convergence rates of m̂(X). The function norm for a tensor function
m is defined as ‖m‖ = [{EXm

2(X)}]1/2, which is equivalent to the L2-norm, ‖m‖L2 =
{
∫
m2(X)dX}1/2, due to Assumption 1. To simplify the notations, we write B0r = β0r,1 ◦

. . . ◦ β0r,D. Theorem 1 shows the convergence rates of the unpenalized estimator based on
(7), where the parameters pi, K, R and R0 are allowed to go to infinity with the sample size
n.

Theorem 1. Suppose m̂(X) is the estimated regression function reconstructed from (7). If
Assumptions 1–4 hold, R ≥ R0, and n > Ch

−2−2/(log hn)
n (log−2 hn)

(
RD+1 +

∑D
i=1Rpi +RK

)
for some C > 0, then we have the following result:

‖m̂−m0‖2 = Op

(
RD+1 +

∑D
i=1Rpi +RK

n

)

+Op

({∑R0
r=1 ‖vec(B0r)‖1

s

}2 1

K2τ

)
.

(14)
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The proof of Theorem 1 is not straightforward. To see this, if we discard the low-rank and
broadcasting structure of the proposed model (3), we can rewrite the regression function as a
nonparametric additive model, and vectorize the basis tensor and its coefficients in (5), i.e.,

m(Xi) = ν + zᵀi a,

where zi = vec{Φ(Xi)} and a = vec(A). The main challenge of studying the convergence
rates is to determine the upper and lower bounds for the eigenvalues of the Gram matrix of
“design”, i.e., ZᵀZ/n, where Z = (z1, . . . , zn)ᵀ. For a fixed number of predictors, Huang et al.
(2010) shows the bounds of the eigenvalues using Lemma 3 of Stone (1985) and Lemma 6.2 of
Zhou et al. (1998). It is worth mentioning that directly using the results of Stone (1985) will
result in a diminishing lower bound at an exponential rate of s, when the number of predictors
s goes to infinity with the sample size n (see, e.g., Chen et al., 2018). Therefore, a new study
of eigenvalue bounds is needed to carefully harness the model structure, in particular the
low-CP-rank structure of A (see (7)). In our proof, we obtain well-controlled bounds of the
restricted eigenvalues over a set of low-CP-rank tensor, that holds with high probability when
the sample size is of order K2

(
RD+1 +

∑D
i=1Rpi+RK

)
; see the more precise version (A.11) in

the supplementary material. The resulting eigenvalue bounds fill in the gap, with a reasonable
sample size dependence.

Roughly speaking, the first term and the second term in (14) correspond to the estimation
error and the approximation error, respectively. We can see that the estimation error roughly
scales with the number of effective parameters in the model. Thus, we believe the derived
rate is very close to the optimal one, if not the same. For different combinations of orders
between the parameters (R,R0, pi) and the sample size n, we can tune the number of basis
functions K to get the best rates of convergence. Let

δ1 = RD+1 +
D∑
i=1

Rpi and δ2 =

{∑R0
r=1 ‖vec(B0r)‖1

s

}2

.

If δ1δ
−1/(2τ+1)
2 R−2τ/(2τ+1) ≥ n1/(2τ+1), the best rate is δ1/n when K satisfies

(nδ2/δ1)1/2τ . K . δ1/R.

On the other hand, if δ1δ
−1/(2τ+1)
2 R−2τ/(2τ+1) < n1/(2τ+1), lettingK � (nδ2/R)1/(2τ+1) results

in the best rate (R/n)2τ/(2τ+1)δ
1/(2τ+1)
2 . One special case is that when pi, R and R0 do not

grow with n, choosing K � n1/(2τ+1) leads to the optimal rate of convergence n−2τ/(2τ+1)

as in Stone (1982). Theorem 1 indeed generalizes the canonical results to tensor low-rank
modeling with broadcasting.

Although Theorem 1 guarantees the asymptotic performance of the unpenalized estima-
tors, in many real applications the penalized estimation is preferred, especially when the
number of predictors are large. Theorem 2 shows the rates of convergence of the penalized
method. Similar to Theorem 1, pi, K, R and R0 are allowed to go to infinity with the sample
size n in Theorem 2.

Theorem 2. Suppose m̂pen(X) is the estimated regression function reconstructed from (10).
If Assumptions 1–4 hold, R ≥ R0 and n > Ch

−2−2/(log hn)
n (log−2 hn)

(
RD+1 +

∑D
i=1Rpi+RK

)
13



for some C > 0, then

‖m̂pen −m0‖2 ≤
C1{δ2

3 + (4KG0)/n}
K

(15)

with probability at least

1− C2 exp

{
− C3

(
RD+1 +R

D∑
i=1

pi +RK

)}
,

where G0 is defined in (A.21) and

δ3 = C4

{
K
(
RD+1 +

∑D
i=1Rpi +RK

)
n

}1/2

+ C5

{∑R0
r=1 ‖vec(B0r)‖1

s

}
1

Kτ−1/2
.

Compared with Theorem 1, Theorem 2 has an additional term G0, which is the bias due
to the elastic-net penalty. When the penalty function is small relatively to the estimation and
approximation errors, this bias can be negligible in the terms of rates of convergence.

5 Experiments

To evaluate the empirical performance of the proposed broadcasted nonparametric tensor re-
gression (BroadcasTR), we compared BroadcasTR with two alternatives upon both synthetic
(Section 5.1) and real data sets (Section 5.2). These alternatives are (i) elastic-net regres-
sion on the vectorized tensor predictor (ENetR) (Zou and Hastie, 2005) and (ii) tensor linear
regression (TLR) (Zhou et al., 2013). Throughout the numerical experiments, ENetR and
TLR were implemented by the R package “glmnet" (Friedman et al., 2010) and the MATLAB
toolbox “TensorReg" (Zhou et al., 2013) respectively. Since the proposed rescaling strategy
(11) can be applied to the computation of tensor linear regression, we also considered this
algorithmic modification in our study. To distinguish this modification, we use TLR and
TLR-rescaled to represent the algorithm of Zhou et al. (2013) and our algorithm with scaling
strategy respectively.

We aim to evaluate estimation and prediction performance as well as region selection
of these methods. To identify entry-wise contribution of the covariate tensor, we note that
the estimated regression function m of the above methods can be expressed as an additive
form ν̂+

∑
i1,...,iD

m̂i1,...,iD(Xi1,...,iD), where
∫ 1

0 m̂i1,...,iD(x)dx = 0, and so the entry-wise effect
can be summarized by the L2-norm ‖m̂i1,...,iD‖L2 = {

∫ 1
0 m̂

2
i1,...,iD

(x)dx}1/2. More specifically,
m̂i1,...,iD is a nonlinear function for BroadcasTR, and a linear function for other alternatives.
Putting together these entrywise nonlinear effects, we obtain a tensor of dimension p1×· · ·×pD
with the (i1, . . . , iD)-th element being ‖m̂i1,...,iD‖L2 . In below, it is called the norm tensor of
the corresponding tensor regression method. We use this norm tensor to indicate important
subregions identified by all methods.

5.1 Synthetic data

Similar to Zhou et al. (2013), we fix the dimension of X to be 64 × 64. In our simulation
study, we consider four different regression functions:
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Case 1: y = m1(X) + ε1 = 1 + 〈B1,X〉+ ε1,

Case 2: y = m2(X) + ε2 = 1 + 〈B2, F1(X)〉+ ε2,

Case 3: y = m3(X) + ε3 = 1 + 〈B3, F1(X)〉+ ε3,

Case 4: y = m4(X) + ε4 = 1 + 〈B41, F1(X)〉+ 〈B42, F2(X)〉+ ε4,

where F1, F2 : [0, 1]64×64 → R64×64 satisfy

(F1(X))i1,i2 = f1(Xi1,i2) = Xi1,i2 + 0.6 sin{2π(Xi1,i2 − 0.5)2},
(F2(X))i1,i2 = f2(Xi1,i2) = Xi1,i2 + 0.3 cos(2πXi1,i2),

for i1 = 1, . . . , 64 and i2 = 1, . . . , 64. The scaling matrices B1, B2, B3, B41 and B42 are
binary and depicted in the first column of Figure 4. These regression functions are used to
illustrate four different situations: (1) a linear model with one important rank-two subregion;
(2) a nonlinear model with one important rank-four subregion; (3) a nonlinear model with
two separated important rank-two subregions that share the same nonlinearity; and (4) a low
rank nonlinear model with two separated important rank-two subregions that show different
nonlinearities.

For each Case j, the covariate tensor X and the error εj were generated such that Xi1,i2 ∼
Uniform[0, 1], εj ∼ N (0, σ2

j ) independently across all i1, i2. The parameter σj was set to
be 10% of the standard deviation of entries of mj(X). We generated 50 simulated data sets
independently for each setting of sample size n = 500, 750, 1000. Each simulated data set was
then split into two separate subsets: a training set with 80% data and a validation set with
20% data. The tuning parameters of the underlying methods were selected by minimizing the
validation error:

1

nvalid

nvalid∑
i=1

(yvalid,i − ŷvalid,i)
2,

over grids of corresponding tuning parameters, where nvalid is the size of the validation set,
ŷvalid,i is the prediction value of the i-th observation yvalid,i in the validation set. These grids
can be found in Section E of the supplementary material.

To evaluate the estimation performance, we define the integrated squared error (ISE)

ISE = ‖m̂−m0‖2L2
,

where m0 and m̂ are the true function and a generic estimated function respectively. We note
that ‖m̂−m0‖L2 = ‖m̂−m0‖ (which we adopt in Section 4), due to the uniform distribution
of X. The average ISEs of the proposed and comparative methods are summarized in Table
1. For the nonlinear situations, i.e., Cases 2–4, it is shown that the proposed BroadcasTR
outperforms the other methods significantly. In particular, BroadcasTR reduces the average
ISEs by 86%–99% in Case 2, 65%–99% in Case 3, and 74%–98% in Case 4. As for Case 1, which
is the linear setting and in favor of the alternative methods, BroadcasTR remains competitive.
It performs better than both TLR and ENetR by showing 54%–99% reduction in the average
ISEs, and is slightly inferior to TLR-rescaled. Besides, TLR-rescaled performs much better
than TLR although they originate from the same penalized regression. This indicates that
the proposed rescaling strategy leads to significant improvements. Furthermore, the accuracy
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Table 1: Estimation performance in synthetic data. Reported are the averages of ISEs and its
standard deviation (in parenthesis) based on 50 data replications. In the first column, n is the total
sample size, of which 20% were kept for validation.

n Case TLR TLR-rescaled ENetR BroadcasTR

500

1 0.251 (0.054) 0.066 (0.012) 16.559 (0.722) 0.092 (0.018)
2 24.422 (2.531) 22.282 (1.683) 31.255 (1.261) 3.185 (1.843)
3 76.331 (5.371) 71.915 (6.543) 75.425 (1.770) 25.228 (5.412)
4 90.285 (7.081) 89.560 (6.742) 89.253 (3.060) 23.647 (6.330)

750

1 0.115 (0.024) 0.038 (0.007) 14.747 (0.606) 0.053 (0.009)
2 20.899 (1.444) 17.039 (1.665) 30.599 (0.897) 0.640 (0.186)
3 71.609 (9.236) 53.298 (4.244) 73.936 (2.681) 3.373 (2.358)
4 80.444 (12.828) 57.946 (4.459) 86.782 (3.576) 4.166 (2.807)

1000

1 0.077 (0.013) 0.028 (0.007) 10.122 (1.021) 0.034 (0.006)
2 18.815 (2.133) 15.212 (0.969) 29.718(0.637) 0.315 (0.046)
3 65.387 (10.013) 45.331 (2.868) 71.729 (2.130) 0.962 (0.201)
4 63.848 (10.967) 51.381 (2.583) 84.549 (2.355) 1.291 (0.437)

of estimation increases with the sample size for the proposed BroadcasTR, which is consistent
with our asymptotic analysis.

The important subregions for BroadcasTR, TLR, TLR-rescaled, and ENetR are identified
by their norm tensors (matrices) as defined above. For each method, the norm tensor with
the median ISE among 50 simulated datasets of n = 1000 was depicted in Figure 4. It shows
that BroadcasTR, TLR and TLR-rescaled have similar region selection result for Case 1 (a
low-rank model with linear effects), whereas BroadcasTR is much better than TLR and TLR-
rescaled for Cases 2–4 (low-rank models with nonlinearity). In all cases, ENetR is unable to
identify the import regions, which is an empirical evidence that incorporating the tensor low-
rank structure can improve region selection, hence enhancing interpretability. We also present
the region identification performance of BroadcasTR for smaller sample sizes (n = 500 or 750)
in Figure 5. It is not surprising to see that when the sample size increases, the accuracy of
identified regions of our proposed method improves.

5.2 Monkey’s electrocorticography data

We also evaluated various methods on a publicly available monkey’s electrocorticography
(ECoG) data set (Shimoda et al., 2012). The corresponding tensor covariate is a preprocessed
ECoG signal (Shimoda et al., 2012), organized as a third order tensor of dimensions 64×10×10
(channel × frequency × time), and the response variable is the movement distance of a
monkey’s left shoulder marker along a particular direction. The data preprocessing procedure
is similar to Shimoda et al. (2012) which tracks 15-minute experiments. Corresponding details
are given in Section F of the supplementary material. Following Hou et al. (2015), we chose
10000 observations of the whole data set starting from the second minute of the experiments.
The data set was then randomly split into three different subsets, i.e., a training set, a
validation set, and a test set, of size 4000, 1000, and 5000 respectively.
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Figure 4: Region selection of TLR, TLR-rescaled, ENetR, and BroadcasTR for n = 1000, of which
20% were for validation. The first column presents the true scaling tensors, which are B1, B2, B3

and B41 + B42 for Cases 1, 2, 3 and 4, respectively. The rest four columns depict the estimated
norm tensor with median ISEs of the comparative and proposed methods. Columns from left to right
respectively correspond to TLR, TLR-rescaled, ENetR, and BroadcasTR. The plots in all columns
share the same color scheme as shown in the color bar at the bottom.

The grids of tuning parameters we used for the real data can be found in Section E of the
supplementary material. To measure the performance, we use mean squared prediction error
(MSPE)

MSPE =
1

ntest

ntest∑
i=1

(ytest,i − ŷtest,i)
2,

where ntest is the size of the test set, ŷtest,i is the prediction value of the i-th observed value
ytest,i in the test set. We repeated the fittings for 10 random splittings. The average MSPE
over these 10 fittings are reported in Table 2, from which we can see BroadcasTR performs
significantly better than the others in prediction.
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Figure 5: Region selection of BroadcasTR for Cases 1–4, with various sample size n = 500, 750,
1000 (where 20% data are used for validation). All plots share the same color scheme as shown in the
color bar at the bottom.

6 Conclusion

In this paper, we have proposed a broadcasted model to study the problem of nonlinear
regressions with tensor covariates. The curse of dimensionality is tamed by simultaneously
utilizing the low-rank tensor structure and broadcasting a uni-dimensional function within
each component. With a regularized estimation, the proposed model shows the advantages of
improved prediction performance and identifying the important regions on the tensor covari-
ates. Moreover, the convergence rates of the estimator are derived, based on a novel restricted
eigenvalue result. We use both synthetic and real data sets to evaluate the empirical perfor-
mance of the proposed broadcasted nonparametric regression model with some comparison
methods, and the results confirm our theoretical findings. The convergence of our proposed
estimation algorithm can be guaranteed, with the proposed generalized rescaling strategy.
Although our method has concentrated on the problem of continuous and univariate response
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Table 2: Prediction performance on the monkey’s electrocorticography data. Reported are averages
of MPSE and its standard deviation (in parenthesis) based on 10 random splittings.

Data TLR TLR-rescaled ENetR BroadcasTR
Monkey 3.1703 (0.0418) 3.0923 (0.0699) 3.1256 (0.0431) 2.5887 (0.0802)

throughout the paper, it is not difficult to generalize it to a classification paradigm or models
with multivariate responses. When one dimension of the tensor covariates is ultra-high, using
the low-rank structure alone may not be sufficient to obtain a consistent estimation with
promising prediction performance. Thus one interesting future research topic is to develop an
alternative method incorporating the low-rank tensor with the entry-wise or slice-wise spar-
sity. Moreover, modeling the regression function by index models with dimension reduction
techniques of tensor covariates is also of interest, and needs further investigation.

A Asymptotic study

A.1 Notations

To simplify the notations, we let

J = {j = (i1, · · · , iD) : 1 ≤ id ≤ pd, d = 1, . . . , D}. (A.1)

By noting that s = ΠD
d=1pd, we have the cardinality |J | = s. The Hilbert-Schmidt norm of a

generic tensor A is defined as ‖A‖HS = 〈A,A〉1/2.
The concept of Gaussian width (Chandrasekaran et al., 2012; Vershynin, 2018) and γ-

functionals (Talagrand, 2005; Banerjee et al., 2015) will be used in several places of our
proofs. We put their definitions in the beginning of technical results.

Definition 2 (Gaussian width). For any set P ⊂ Rp, the Gaussian width of the set P is
defined as

w(P) = Ex sup
a∈P
〈a,x〉,

where the expectation is over x ∼ N(0, Ip×p), a vector of independently standard Gaussian
random variables.

Definition 3 (γ-functionals). Consider a metric space (T, d) and for a finite set A ⊂ T ,
let |A| denote its cardinality. An admissible sequence is an increasing sequence of subsets
{An, n ≥ 0} of T , such that |A0| = 1 and for n ≥ 1, |An| = 22n. Given α > 0, we define the
γα-functional as

γα(T, d) = inf sup
t∈T

∞∑
n=0

Diam{An(t)},

where An(t) is the unique element of An that contains t, Diam{An(t)} is the diameter of An
according to d, and the infimum is over all admissible sequences of T .
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For convenience, we use a mapping Ω : Rp1×...×pD×K×R→ Rp1×...×pD×K to represent the
operator of absorbing the constant into the coefficients of B-spline basis for the first predictor.
More precisely, Ω is defined by

A[ = Ω(A, ν), (A.2)

where A[
i1,··· ,iD,k = Ai1,··· ,iD,k, for (i1, · · · , iD) 6= (1, · · · , 1) and A[

1,...,1,k = A1,...,1,k + sν,
k = 1, . . . ,K. It then follows from the property of B-spline functions that

ν +
1

s
〈A,Φ(X)〉 =

1

s
〈A[,Φ(X)〉. (A.3)

This property simplifies the development of the asymptotic theory since A[ still enjoys a CP
structure.

We also write A0 =
∑R0

r=1 B0r ◦ α0r, r = 1, . . . , R, where α0r satisfies (12) and (13). We
define

h̃n = max

{
h

1/(− log hn)
n

(−2 log hn)
, hn

}
. (A.4)

With this definition, we have

h̃2
nh
−2
n � h−2−2/(log hn)

n (log−2 hn), (A.5)

which is a quantity presented in the sample size requirements of Theorems 1 and 2.

A.2 Proof of Theorem 1

Suppose (Â, ν̂) is a solution of (7), which gives

n∑
i=1

(
yi − ν̂ −

1

s
〈Â,Φ(Xi)〉

)2

≤
n∑
i=1

(
yi − ν0 −

1

s
〈A0,Φ(Xi)〉

)2

.

Denoting Â[ = Ω(Â, ν̂) and A[
0 = Ω(A0, ν0) where the operator Ω is defined in (A.2), the

aforementioned inequality is equivalent to
n∑
i=1

(
yi −

1

s
〈Â[,Φ(Xi)〉

)2

≤
n∑
i=1

(
yi −

1

s
〈A[

0,Φ(Xi)〉
)2

. (A.6)

Let A] = Â[ −A[
0, a] = vec(A]), a[0 = vec(A[

0) and

Z = (z1, . . . , zn)ᵀ ∈ Rn×sK , (A.7)

where zi = vec{Φ(Xi)}, i = 1, . . . , n. In fact, Z can be regarded as the “design" matrix
formed by the spline basis. Using (A.6) and working out the squares, we obtain

1

s2
‖Za]‖22 ≤ 2

〈
1

s
Za], ε

〉
+ 2

〈
1

s
Za],y − ε− 1

s
Za[0

〉
, (A.8)

where y = (y1, · · · , yn)ᵀ. By Lemma A.1, we have
∑K

k=1A
]
j,kuk = 0 for j ∈ J /{(1, · · · , 1)},

where

uk =

∫ 1

0
bk(x)dx.
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Since rank(A[
0) ≤ R0 + 1, rank(Â[) ≤ R + 1, it is trivial to see rank(A]) ≤ R0 + R + 2. To

finish the proof, we will find the upper bound of the right hand side and the lower bound of
the left hand side with respect to ‖a]‖2 in (A.8).

Firstly, we will find the upper bound of 〈Za], ε〉. To simplify the notations, let

P1 =

{
vec(A)

‖A‖HS
:

K∑
k=1

Aj,kuk = 0, for j ∈ J /{(1, . . . , 1)}, rank(A) ≤ R1

}
, (A.9)

where
R1 = R+R0 + 2 ≤ 2R+ 2. (A.10)

By Lemma A.4, if n > Ch̃2
nh
−2
n w2(P1) for some C > 0,

C1nhn‖a]‖22 ≤ ‖Za]‖22 ≤ C2nhn‖a]‖22, (A.11)

with probability as least 1 − 2exp{−C3w
2(P1)}. By (A.10) and Lemma A.3, the Gaussian

width

w(P1) ≤ C
(
RD+1

1 +R1

D∑
d=1

pd +R1K

)1/2

≤ C4

(
RD+1 +R

D∑
i=1

pi +RK

)1/2

. (A.12)

In the following, we assume n > Ch̃2
nh
−2
n (RD+1 + R

∑D
i=1 pi + RK) for some C > 0, then

(A.11) holds with probability tending to 1. By (A.10), (A.11), and Lemma A.5, we have the
following upper bound

〈Za], ε〉 ≤ ‖a]‖2Op

({
nhn

(
RD+1 +

D∑
i=1

Rpi +RK

)}1/2
)
. (A.13)

Secondly, we find the upper bound of 〈Za],y − ε− Za[0〉. Note that∥∥∥∥y − ε− 1

s
Za[0

∥∥∥∥2

2

=

n∑
i=1

∣∣∣∣1s
R0∑
r=1

〈B0r, Fr(Xi)〉 − 〈A0,Φ(Xi)〉
∣∣∣∣2

≤
n∑
i=1

(
1

s

R0∑
r=1

∣∣〈B0r, Fr(Xi)〉 − 〈B0r ◦α0r,Φ(Xi)〉
∣∣)2

≤
n∑
i=1

{
1

s

R0∑
r=1

C

Kτ
‖vec(B0r)‖1

}2

= C

{∑R0
r=1 ‖vec(B0r)‖1

s

}2 n

K2τ
.

(A.14)

Using the Cauchy-Schwarz inequality and (A.11), it is shown that〈
1

s
Za],y − ε− 1

s
Za[0

〉
≤
∥∥∥∥y − ε− 1

s
Za[0

∥∥∥∥
2

∥∥∥∥1

s
Za]

∥∥∥∥
2

=
1

s
‖Za]‖2Op

({∑R0
r=1 ‖vec(B0r)‖1

s

}√
n

Kτ

)

=
1

s
‖a]‖2Op

({∑R0
r=1 ‖vec(B0r)‖1

s

}
n
√
hn

Kτ

)
.

(A.15)

21



Finally, plugging (A.13) and (A.15) into (A.8), we get

1

s2
‖Za]‖22 ≤

1

s
‖a]‖2Op

({
nhn

(
RD+1 +

D∑
i=1

Rpi +RK

)}1/2
)

+Op

({∑R0
r=1 ‖vec(B0r)‖1

s

}
n
√
hn

Kτ

)
.

(A.16)

It follows from (A.11) and (A.16) that

1√
s
‖a]‖2 = Op

({
sK(RD+1 +

∑D
i=1Rpi +RK)

n

}1/2

+

{∑R0
r=1 ‖vec(B0r)‖1√

s

}
1

Kτ−1/2

)
.

Further, by Assumption 1 and (A.28) of Lemma A.2, we have

‖m̂(X)−m0(X)‖2 ≤ C5hn
1

s2
‖Â[ −A[

0‖2HS = C5hn
1

s2
‖a]‖22, (A.17)

where C5 is a constant, which will complete the proof of (14) by noting (A.5).

A.3 Proof of Theorem 2

Suppose (Âpen, ν̂pen) is a solution to (10) and

Âpen =

R∑
r=1

β̂r,1 ◦ β̂r,2 ◦ · · · ◦ β̂r,D ◦ α̂r.

Since the arguments used in the proof of Theorem 1 have probability inequality versions, we
can show the consistency of the penalized estimator similarly. In the following, we let

Ĝ =
R∑
r=1

D∑
d=1

pd∑
`=1

Pλ(β̂r,d,`),

where β̂r,d,` is the `-th element of β̂r,d. By Theorem 3, there exists ν̌pen ∈ R and

Ǎpen =

R∑
r=1

β̂r,1 ◦ β̂r,2 ◦ · · · ◦ β̂r,D ◦ α̌r ∈ Rp1×...×pD×K ,

such that
ν̌pen +

1

s

〈
Ǎpen,Φ(X)

〉
= ν̂pen +

1

s

〈
Âpen, Φ̃(X)

〉
, (A.18)

where α̌r = (α̌r,1, . . . , α̌r,K)ᵀ satisfying

K∑
k=1

α̌r,kuk = 0, (A.19)
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with uk =
∫ 1

0 bk(x)dx. We remind that

A0 =

R0∑
r=1

β0r,1 ◦ β0r,2 ◦ · · · ◦ β0r,D ◦α0r, α0r = (α0r,1, . . . , α0r,K)ᵀ,

K∑
k=1

α0r,kuk = 0.

The proof of Theorem 3 also shows that there exists ν̃0 ∈ R and

Ã0 =

R0∑
r=1

β0r,1 ◦ β0r,2 ◦ · · · ◦ β0r,D ◦ α̃0r ∈ Rp1×...×pD×(K−1).

such that
ν̃0 +

1

s

〈
Ã0, Φ̃(X)

〉
= ν0 +

1

s

〈
A0,Φ(X)

〉
. (A.20)

To achieve the norm 1 restrictions of (10), we normalize α̃0r in Ã0 by

Ã0 =

R0∑
r=1

(‖α̃0r‖2 · β0r,1) ◦ β0r,2 ◦ · · · ◦ β0r,D ◦
α̃0r

‖α̃0r‖2
.

Using the rescaling strategy (11) on {‖α̃0r‖2β0r,1,β0r,2, . . . ,β0r,D} for r = 1, . . . , R, we get
a solution {ρ0r,d}Dd=1, r = 1, . . . , R. Denoting β̃0r,1 = ρ0r,1‖α̃0r‖2β0r,1, β̃0r,d = ρ0r,dβ0r,d,
d = 2, . . . , D, we have

Ã0 =

R0∑
r=1

β̃0r,1 ◦ β̃0r,2 ◦ · · · ◦ β̃0r,D ◦
α̃0r

‖α̃0r‖2
.

Let

G0 =

R0∑
r=1

D∑
d=1

pd∑
`=1

Pλ(β̃0r,d,`), (A.21)

where β̃0r,d,` is the `-th element of β̃0r,d, then it is the minimal value of penalty term on the
corresponding scale class. Using (A.18)–(A.21), we can obtain

n∑
i=1

(
yi − ν̌pen −

1

s
〈Ǎpen,Φ(Xi)〉

)2

+ Ĝ ≤
n∑
i=1

(
yi − ν0 −

1

s
〈A0,Φ(Xi)〉

)2

+G0.

Let Ǎ[
pen = Ω(Ǎpen, ν̌pen) and A[

0 = Ω(A0, ν0). Since Ĝ ≥ 0, we have

n∑
i=1

(
yi −

1

s
〈Ǎ[

pen,Φ(Xi)〉
)2

≤
n∑
i=1

(
yi −

1

s
〈A[

0,Φ(Xi)〉
)2

+G0. (A.22)

Similar to the proof of Theorem 1, we let A]
pen = Ǎ[

pen−A[
0, a

]
pen = vec(A]

pen), a[0 = vec(A[
0)

and Z = (z1, . . . , zn)ᵀ ∈ Rn×sK , where zi = vec{Φ(Xi)}, i = 1, . . . , n. Using (A.22) and
working out the squares, we obtain

1

s2
‖Za]pen‖22 ≤ 2

〈
1

s
Za]pen, ε

〉
+ 2

〈
1

s
Za]pen,y − ε−

1

s
Za[0

〉
+G0, (A.23)
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where y = (y1, · · · , yn)ᵀ. By (A.19), Lemma A.1 and Lemma A.6, we have
∑K

k=1A
]
j,kuk = 0

for j ∈ J /{(1, · · · , 1)}. Since rank(A[
0) ≤ R0 + 1, rank(Ǎ[

pen) ≤ R + 1, it is trivial to see
rank(A]

pen) ≤ R0 + R + 2. To finish the proof, we will try to find the upper bound of the
right hand side and the lower bound of the left hand side with respect to ‖a]pen‖2 in (A.23).

Firstly, we will find the upper bound of 〈Za]pen, ε〉. For simplicity, we will use part of
arguments in the proof of Theorem 1 with a slight abuse of notations. In the following part,
we assume n > Ch̃2

nh
−2
n (RD+1 + R

∑D
i=1 pi + RK) for some C > 0. By (A.9)–(A.12) and

Lemma A.5, we have the following upper bound

〈Za]pen, ε〉 ≤ C‖a]pen‖2
{
nhn

(
RD+1 +

D∑
i=1

Rpi +RK

)}1/2

, (A.24)

with probability at least

1− C3 exp

{
− C4

(
RD+1 +R

D∑
i=1

pi +RK

)}
.

Secondly, we find the upper bound of 〈Za]pen,y − ε − Za[0〉. Using the Cauchy-Schwarz
inequality, (A.11), (A.12), and (A.14), it shows that〈

1

s
Za]pen,y − ε−

1

s
Za[0

〉
≤
∥∥∥∥y − ε− 1

s
Za[0

∥∥∥∥
2

∥∥∥∥1

s
Za]pen

∥∥∥∥
2

≤ C

s
‖Za]pen‖2

{∑R0
r=1 ‖vec(B0r)‖1

s

}√
n

Kτ

≤ C

s
‖a]pen‖2

{∑R0
r=1 ‖vec(B0r)‖1

s

}
n
√
hn

Kτ
,

(A.25)

with probability at least

1− C1 exp

{
− C2

(
RD+1 +R

D∑
i=1

pi +RK

)}
.

Thirdly, applying (A.24) and (A.25) to (A.23), we get

1

s2
‖a]pen‖22 ≤

δ3

s
‖a]pen‖2 +

1

nhn
G0, (A.26)

with probability at least

1− C exp

{
− C5

(
RD+1 +R

D∑
i=1

pi +RK

)}
, (A.27)

where

δ3 = C

{
K
(
RD+1 +

∑D
i=1Rpi +RK

)
n

}1/2

+ C6

{∑R0
r=1 ‖vec(B0r)‖1

s

}
1

Kτ−1/2
.
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By solving the second order inequality (A.26), we obtain

1

s
‖a]pen‖2 ≤

{δ2
3 + 4G0/(nhn)}1/2 + δ3

2
,

under the same probability (A.27). To prove (15), we use the similar arguments of (A.17) to
obtain,

‖m̂pen(X)−m0(X)‖2 ≤ C{δ2
3 + (4KG0)/n}

K
,

with the probability at least

1− C7 exp

{
− C8

(
RD+1 +R

D∑
i=1

pi +RK

)}
.

A.4 Technical results

Lemma A.1. Suppose A ∈ Rp1×...×pD×K has such a CP decomposition,

A =

R∑
r=1

βr,1 ◦ . . . ◦ βr,D ◦αr,

where αr = (αr,1, · · · , αr,K)ᵀ ∈ RK and βr,d ∈ Rpd for d = 1, . . . , D and r = 1, . . . , R. If
u ∈ {(u1, · · · , uK)ᵀ :

∑K
k=1 αr,kuk = 0, r = 1, . . . , R}, then

K∑
k=1

Aj,kuk = 0, for j ∈ J ,

where J is defined in (A.1).

Proof. This proof is straightforward. For simplicity, for r = 1, . . . , R, let

Br = βr,1 ◦ . . . ◦ βr,D.

Since
K∑
k=1

αr,kuk = 0,

we have
K∑
k=1

Br,jαr,kuk = 0, j ∈ J ,

where Br,j is j-th entry of Br, r = 1, . . . , R. Therefore,

K∑
k=1

Aj.kuk =

K∑
k=1

R∑
r=1

Br,jαr,kuk =
R∑
r=1

K∑
k=1

Br,jαr,kuk = 0, j ∈ J .
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Lemma A.2. Suppose A ∈ Rp1×...×pD×K and U ∈ Rp1×...×pD is a random tensor with its
entry Uj

i.i.d.∼ U(0, 1), for j ∈ J , where J is defined in (A.1). Recall that (Φ(X))j,k =
bk(Xj), where {bk(x)}Kk=1 be a B-spline basis, x ∈ [0, 1]. Under Assumptions 1 and 4, if∑K

k=1Aj,kuk = 0 for j ∈ J1 := J /{(1, . . . , 1)}, where uk =
∫ 1

0 bk(x)dx, then we have

i.
C1Cζhn‖A‖2HS ≤ E{〈A,Φ(X)〉2} ≤ C2hn‖A‖2HS , (A.28)

and

ii.
‖〈A,Φ(X)〉‖2ψ2

≤ C3h̃n‖A‖2HS , (A.29)

where C1, C2, C3,Cζ are positive constants, Cζ depends on the order of B-spline ζ, and h̃n is
defined in (A.4).

Proof. We will prove the population bound (A.28) at first. Let Aj = (Aj,1, · · · , Aj,K)ᵀ for
j ∈ J . By the property of B-spline (see, e.g., De Boor, 1973, 1976) and Assumption 4, for
1 ≤ q ≤ +∞,

Cζ‖Aj‖q ≤ h−1/q
n

∥∥∥∥ K∑
k=1

Aj,kbk(Uj)

∥∥∥∥
q

≤ C‖Aj‖q, (A.30)

where Cζ and C are two positive constants and Cζ depends on the order of B-spline ζ. By
the independence and the mean zero restriction for j ∈ J1, we have

E{〈A,Φ(U)〉2} =
∑
j∈J

E

[{ K∑
k=1

Aj,kbk(Uj)

}2
]
.

Taking q = 2 in (A.30) yields

Cζhn‖Aj‖22 ≤ E

[{ K∑
k=1

Aj,kbk(Uj)

}2
]
≤ Chn‖Aj‖22,

then
Cζhn‖A‖2HS ≤ E{〈A,Φ(U)〉2} ≤ Chn‖A‖2HS . (A.31)

By Assumption 1, we have

C1E{〈A,Φ(U)〉2} ≤ E{〈A,Φ(X)〉2} ≤ C4E{〈A,Φ(U)〉2}. (A.32)

It follows from (A.31) and (A.32) that

C1Cζhn‖A‖2HS ≤ E{〈A,Φ(X)〉2} ≤ C2hn‖A‖2HS ,

which completes the proof of (A.28).
Now, we will prove the sub-Gaussian norm bound (A.29). Note that

‖〈A,Φ(U)〉‖ψ2 ≤
∥∥∥∥ ∑
j∈J1

K∑
k=1

Aj,kbk(Uj)

∥∥∥∥
ψ2

+

∥∥∥∥ K∑
k=1

A1,··· ,1,kbk(U1,··· ,1)

∥∥∥∥
ψ2

,
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then

‖〈A,Φ(U)〉‖2ψ2
≤ 2

∥∥∥∥ ∑
j∈J1

K∑
k=1

Aj,kbk(Uj)

∥∥∥∥2

ψ2

+ 2

∥∥∥∥ K∑
k=1

A1,··· ,1,kbk(U1,··· ,1)

∥∥∥∥2

ψ2

. (A.33)

Using the independence property of U, mean zero restriction of A and Proposition 2.6.1 of
Vershynin (2018), we obtain∥∥∥∥ ∑

j∈J1

K∑
k=1

Aj,kbk(Uj)

∥∥∥∥2

ψ2

≤ C5

∑
j∈J1

∥∥∥∥ K∑
k=1

Aj,kbk(Uj)

∥∥∥∥2

ψ2

. (A.34)

It follows from (A.33) and (A.34) that

‖〈A,Φ(U)〉‖2ψ2
≤ 2C5

∑
j∈J1

∥∥∥∥ K∑
k=1

Aj,kbk(Uj)

∥∥∥∥2

ψ2

+ 2

∥∥∥∥ K∑
k=1

A1,··· ,1,kbk(U1,··· ,1)

∥∥∥∥2

ψ2

.

Therefore,

‖〈A,Φ(U)〉‖2ψ2

≤ (2C5 + 2)
∑
j∈J

∥∥∥∥ K∑
k=1

Aj,kbk(Uj)

∥∥∥∥2

ψ2

+ (2C5 + 2)

∥∥∥∥ K∑
k=1

A1,··· ,1,kbk(U1,··· ,1)

∥∥∥∥2

ψ2

= (2C5 + 2)
∑
j∈J

∥∥∥∥ K∑
k=1

Aj,kbk(Uj)

∥∥∥∥2

ψ2

.

(A.35)

We then consider the sub-Gaussian norm of
∑K

k=1Aj,kbk(Uj). When q = 1, by (A.30), we
have ∥∥∥∥ K∑

k=1

Aj,kbk(Uj)

∥∥∥∥
1

≤ 2
‖
∑K

k=1Aj,kbk(Uj)‖2√
2

≤ C
√
hn‖Aj‖2. (A.36)

Similarly, when q ≥ 2, we obtain

‖
∑K

k=1Aj,kbk(Uj)‖q√
q

≤ Ch
1/q
n√
q
‖Aj‖q ≤ C

h
1/q
n√
q
‖Aj‖2. (A.37)

Since f(x) = h
1/x
n /
√
x get the maximum at x = −2 log hn, then

h
1/q
n√
q
‖Aj‖2 ≤

h
1/(−2 log hn)
n

(−2 log hn)1/2
‖Aj‖2. (A.38)

Due to the definition of h̃n in (A.4) and using (A.35)–(A.38), we get

‖〈A,Φ(U)〉‖2ψ2
≤ (2C5 + 2)h̃nC

2‖A‖2HS . (A.39)

Note that for q ≥ 1,

1
√
q

[
E{|〈A,Φ(X)〉|q}

]1/q ≤ C 1
√
q

[
E{|〈A,Φ(U)〉|q}

]1/q ≤ C‖〈A,Φ(U)〉‖ψ2 ,
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therefore,
‖〈A,Φ(X)〉‖2ψ2

≤ C3h̃n‖A‖2HS ,

which completes the proof of (A.29).

Lemma A.3. Let A ∈ Rp1×...×pD×K , and

P =

{
vec(A)

‖A‖HS
:

K∑
k=1

Aj,kuk = 0, for j ∈ J /{(1, . . . , 1)}, rank(A) ≤ R
}
, (A.40)

where uk =
∫ 1

0 bk(x)dx and J is defined in (A.1). The Gaussian width satisfying

w(P) ≤ C
(
RD+1 +R

D∑
d=1

pd +RK

)1/2

. (A.41)

Proof. By the covering number argument in Lemma A.7, we have

N(ε,P, l2) ≤
(
C1/ε

)RD+1+R
∑D

i=1 pi+RK ,

where C1 = 3D + 4 is a constant. Suppose a ∈ P and x ∈ N (0, Is×s), then by the Dudley’s
integral entropy bound (see, e.g., Theorem 3.1 of Koltchinskii, 2011), we obtain

Ex sup
a∈P

(aᵀx) ≤ C3

∫ 2

0

{(
RD+1 +R

D∑
i=1

pi +RK

)
log(C1/x)

}1/2

dx

≤ C
(
RD+1 +R

D∑
i=1

pi +RK

)1/2

.

Thus we complete the proof.

Lemma A.4. Let A ∈ Rp1×...×pD×K and suppose P is defined in (A.40). Under Assumptions
1 and 4 , we have

i.

sup
vec(A)∈P

∣∣∣∣∣ 1n 1

E{|〈A,Φ(X)〉|2}

n∑
i=1

〈A,Φ(Xi)〉2 − 1

∣∣∣∣∣ ≤ C1h̃nh
−1
n

w(P)√
n

(A.42)

with probability at least 1− exp{−C2w
2(P)}, where w(P) is the Gaussian width, (Φ(X))j,k =

bk(Xj) for j ∈ J , k = 1, . . . ,K, J is defined in (A.1) and h̃n is defined in (A.4). Fur-
thermore, suppose n > Ch̃2

nh
−2
n w2(P) for some C > 0, then with the same probability, we

have

ii.

C3hn ≤ inf
vec(A)∈P

1

n

∣∣∣∣ n∑
i=1

〈A,Φ(Xi)〉
∣∣∣∣2 ≤ sup

vec(A)∈P

1

n

∣∣∣∣ n∑
i=1

〈A,Φ(Xi)〉
∣∣∣∣2 ≤ C4hn. (A.43)

Note that the above w(P) can be replaced by a constant t, provided t ≥ w(P).
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Proof. Based on Lemma A.2, the following proof is similar to Theorem 12 of Banerjee et al.
(2015). We consider the following class of functions

F =

{
fA : fA{Φ(X)} =

1√
E{|〈A,Φ(X)〉|2}

〈A,Φ(X)〉, vec(A) ∈ P
}
.

It is trivial to see that F ⊂ SL2 := {f : E[f2{Φ(X)}] = 1}. By definition,

sup
fA∈F

‖fA‖ψ2 = sup
vec(A)∈P

∥∥∥∥ 1√
E{|〈A,Φ(X)〉|2}

〈A,Φ(X)〉
∥∥∥∥
ψ2

,

and by Lemma A.2, for every vec(A) ∈ P,∥∥∥∥ 1√
E{|〈A,Φ(X)〉|2}

〈A,Φ(X)〉
∥∥∥∥
ψ2

≤ κn,

where κn = C5h̃
1/2
n h

−1/2
n . Then we obtain

sup
fA∈F

‖fA‖ψ2 ≤ κn.

Thus for the γ2 functionals, we have

γ2(F ∩ SL2 , ‖.‖ψ2) ≤ κnγ2(F ∩ SL2 , ‖.‖L2) ≤ C6κnw(P),

where the last inequality follows from Theorem 2.1.1 of Talagrand (2005). By Theorem 10 of
Banerjee et al. (2015), we can choose

θ = C7C6κ
2
n

w(P)√
n
≥ C7κn

γ2(F ∩ SL2 , ‖.‖ψ2)√
n

.

As a result, with probability at least 1 − exp(−C8θ
2n/κ4

n), we have (A.42) holds with C1 =
C7C6C

2
5 and C2 = C8C

2
7C

2
6 . Suppose

√
n > Ch̃nh

−1
n w(P) for some C > 0, then by Lemma

A.2, with probability at least 1− exp{−C2w
2(P)}, we have

C3hn ≤ inf
vec(A)∈P

1

n

∣∣∣∣ n∑
i=1

〈A,Φ(Xi)〉
∣∣∣∣2 ≤ sup

vec(A)∈P

1

n

∣∣∣∣ n∑
i=1

〈A,Φ(Xi)〉
∣∣∣∣2 ≤ C4hn,

which completes the proof of (A.43).

Lemma A.5. Suppose A ∈ Rp1×...×pD×K , rank(A) ≤ R and
∑K

k=1Aj,kuk = 0 for j ∈
J /{(1, . . . , 1)}, where uk =

∫ 1
0 bk(x)dx and J is defined in (A.1). Under Assumptions 1, 2,

and 4, if n > Ch̃2
nh
−2
n

(
RD+1 +R

∑D
i=1 pi+RK

)
for some constant C > 0, where h̃n is defined

in (A.4), we then have

n∑
i=1

〈A,Φ(Xi)〉εi ≤ C1‖A‖HS
{
nhn

(
RD+1 +

D∑
i=1

Rpi +RK

)}1/2

, (A.44)

with probability at least

1− C2 exp

{
− C3

(
RD+1 +R

D∑
i=1

pi +RK

)}
.
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Proof. We use the notation Z = (z1, · · · , zn)ᵀ introduced in (A.7), then the left hand side of
(A.44) can be rewritten as

n∑
i=1

〈A,Φ(Xi)〉εi = (Za)ᵀε.

Consider
Γ1 =

{
Za√

λRmax(ZᵀZ)
: a ∈ P

}
,

where λRmax(ZᵀZ) = supa∈P ‖Za‖2 and P is defined as (A.40). By the covering number
argument in Lemma A.7,

N(ε,P, l2) ≤
(
C4/ε

)RD+1+R
∑D

d=1 pd+RK
,

where C4 = 3D + 4 is a constant. Following from the definition of Γ1, we have

N(ε,Γ1, l2) ≤ N(ε,P, l2) ≤
(
C4/ε

)RD+1+R
∑D

i=1 pi+RK .

By Assumption 2, for η ∈ Γ1, E{exp(tηᵀε)} ≤ exp(Ct2‖η‖2) ≤ exp(Ct2). Using the Dudley’s
integral entropy bound, we have

E sup
η∈Γ1

(ηᵀε) ≤ C
∫ 2

0

{(
RD+1 +R

D∑
i=1

pi +RK

)
log
(
C4/ε

)}1/2

dε

≤ C5

(
RD+1 +R

D∑
i=1

pi +RK

)1/2

.

As a direct result (e.g., Theorem 8.1.6 of Vershynin, 2018), we have

sup
η∈Γ1

(ηᵀε) ≤ C
[ ∫ 2

0

{(
RD+1 +R

D∑
i=1

pi +RK

)
log
(
C4/ε

)}1/2

dε+ 2t

]

≤ C6

{(
RD+1 +R

D∑
i=1

pi +RK

)1/2

+ t

}
,

with probability as least 1− 2 exp(−t2), which implies

(Za)ᵀε ≤ C7

√
λRmax(ZᵀZ)

(
RD+1 +R

D∑
i=1

pi +RK

)1/2

, (A.45)

with probability as least

1− 2 exp

{
−
(
RD+1 +R

D∑
i=1

pi +RK

)}
.

Plugging (A.41) and (A.43) into (A.45), we will complete the proof of (A.44).
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Lemma A.6. Suppose
∫ 1

0 fr(u)du = 0, r = 1, . . . , R and Assumption 3 holds. Then there
exist α0r,k, k = 1, . . . ,K, such that∥∥∥∥fr − K∑

k=1

α0r,kbk

∥∥∥∥
∞

= O(K−τ ),

where
∑K

k=1 α0r,kuk = 0 and uk =
∫ 1

0 bk(x)dx.

Proof. It is a well-known result that for each r, there exists a spline function f1r which can
be represented by {bk(x)}Kk=1, such that

‖fr − f1r‖∞ = O(K−τ ).

Let f2r = f1r −
∫ 1

0 f1r(u)du, then we have

‖fr − f2r‖∞ ≤ ‖fr − f1r‖∞ +

∣∣∣∣ ∫ 1

0
f1r(u)du

∣∣∣∣.
Since ∣∣∣∣ ∫ 1

0
f1r(u)du

∣∣∣∣ =

∣∣∣∣ ∫ 1

0
{f1r(u)− f(u)}du+

∫ 1

0
f(u)du

∣∣∣∣
≤ ‖fr − f1r‖∞
= O(K−τ ),

it is straightforward to get
‖fr − f2r‖∞ = O(K−τ ).

The proof is completed by noting that f2r is a spline function with mean zero.

Lemma A.7. Let A ∈ Rp1×...×pD×K . To simplify the notations, denote pD+1 = K. Let
Γ2 = {a : ‖a‖2 ≤ 1, a = vec(A), rank(A) ≤ R}. Then the covering number of Γ2 satisfies

N(ε,Γ2, l2) ≤
(

3D + 4

ε

)RD+1+R
∑D+1

d=1 pd

. (A.46)

Proof. Since the CP decomposition is a special case of the Tucker decomposition (Kolda and
Bader, 2009), A can be represented as

A = I×1 B1 ×2 · · · ×D BD ×D+1 BD+1, (A.47)

where I ∈ RR×R...×R is a diagonal tensor of which all the diagonal entries are 1, Bd ∈ Rpd×R,
and ×d denotes the d-mode (matrix) product of a tensor with a matrix (Kolda and Bader,
2009). Let rd = rank(Bd). Through the QR decomposition, we get Bd = QdRd, where
Qᵀ
dQd = Ird with Ird ∈ Rrd×rd the identity matrix. Applying the argument to (A.47), we
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have

A = (I×1 B1 ×2 · · · ×D BD)×D+1 (QD+1RD+1)

= (I×1 B1 ×2 · · · ×D BD ×D+1 RD+1)×D+1 QD+1

= {(I×D+1 RD+1)×1 B1 ×2 · · · ×D BD} ×D+1 QD+1

= {(I×D+1 RD+1)×1 B1 ×2 · · · ×D (QDRD)} ×D+1 QD+1

= {(I×D RD ×D+1 RD+1)×1 B1 ×2 · · · ×D−1 BD−1} ×D QD ×D+1 QD+1

= · · ·
= (I×1 R1 ×2 · · · ×D+1 RD+1)×1 Q1 ×2 · · · ×D+1 QD+1.

In other words, the CP decomposition will lead a higher-order singular value decomposition
(HOSVD)(see, e.g., De Lathauwer et al., 2000). By Lemma 2 of Rauhut et al. (2017), we
obtain

N(ε,Γ2, l2) ≤
(

3D + 4

ε

)ΠD+1
d=1 rd+

∑D+1
d=1 pdrd

.

Therefore (A.46) is shown by noting that rd ≤ R for d = 1, . . . , D + 1.

B Algorithmic analysis

B.1 Equivalent basis

To begin with, we define or recall some notations which will be used later. Recall that
{b̃k(x)}Kk=1 is the truncated power basis and {bk(x)}Kk=1 is the B-spline basis. Let uk =∫ 1

0 bk(x)dx and ũk =
∫ 1

0 b̃k(x)dx. Denote Φ(X), Φ̌(X) ∈ Rp1×p2×···×pD×K be the tensor formed
from the bases, which means (Φ(X))j,k = bk(Xj) and (Φ̌(X))j,k = b̃k(Xj), j ∈ J , k =
1, . . . ,K. We define two function classes,

M1 =

{
m(X) : m(X) = ν1 +

1

s

R∑
r=1

〈β1r,1 ◦ β1r,2 ◦ · · · ◦ β1r,D ◦α1r,Φ(X)〉 ,
K∑
k=1

α1r,kuk = 0

}
,

and

M2 =

{
m(X) : m(X) = ν2 +

1

s

R∑
r=1

〈
β2r,1 ◦ β2r,2 ◦ · · · ◦ β2r,D ◦α2r, Φ̌(X)

〉
,

K∑
k=1

α2r,kũk = 0

}
,

where νl ∈ R, βlr,d ∈ Rpd and αlr = (αlr,1, · · · , αlr,K)ᵀ ∈ RK , r = 1, . . . , R, d = 1, . . . , D,
l = 1, 2. Recall that Φ̃(X) ∈ Rp1×...×pD×K−1 is defined by (Φ̃(X))j,k = b̃k+1(Xj), j ∈ J ,
k = 1, . . . ,K − 1. We define the following function class that the linear constraints are
removed, i.e.,

M3 =

{
m(X) : m(X) = ν +

1

s

R∑
r=1

〈
β3r,1 ◦ β3r,2 ◦ · · · ◦ β3r,D ◦α3r, Φ̃(X)

〉}
,

where ν3 ∈ R, β3r,d ∈ Rpd , and α3r = (α3r,1, · · · , α3r,K−1)ᵀ ∈ RK−1, r = 1, . . . , R, d =
1, . . . , D.

By the following Theorem 3, we can remove the linear constraints in (7) and use any
equivalent spline basis to develop our theory.
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Theorem 3. M1 =M2 =M3.

Proof. Firstly, we will prove M1 = M2. For each m1(X) ∈ M1. By the property of spline
basis (see, e.g., Chapter 3 of Ruppert et al. (2003)), there exists an invertible matrix Q such
that b(x) = Qb̃(x), where b(x) = (b1(x), . . . , bK(x))ᵀ and b̃(x) = (b̃1(x), . . . , b̃K(x))ᵀ. It is
straightforward to seeM1 =M2.

Secondly, we will proveM2 ⊂M3 ⊂M2. For notational simplicity, denote

Blr = βlr,1 ◦ . . . ◦ βlr,D, for l = 2, 3,

and J ∈ Rp1×···×pD as the tensor of which all the entries are 1. For each m2(X) ∈ M2,
take B3r = B2r, v3 = v2 + 1/s

∑R
r=1〈B2r, α2r,1J〉 and α3r,k = α2r,k+1, for k = 1, . . . ,K − 1.

Then we have m2(X) = m3(X) ∈ M3 and M2 ⊂ M3. For each m3(X) ∈ M3. Suppose∑K−1
k=1 α3r,kũk+1 = Cr, it is trivial to see ũ1 6= 0. We can choose α2r,1 = −Cr/ũ1, α2r,k+1 =

α3r,k for k = 1, . . . ,K − 1 so that α2r satisfies the constraint in M2. Taking ν2 = ν3 +∑R
r=1〈B3r, Cr/ũ1J〉, B2r = B3r, it is trivial to see m3(X) = m2(X) ∈ M2. ThusM3 ⊂M2

and we getM3 =M2.

B.2 Rescaling strategy for the elastic net

For the elastic net penalty, denote

G(B1, . . . ,BD) = λ1

R∑
r=1

Gr({βr,d}d, λ2),

where

Gr({βr,d}d, λ2) =
D∑
d=1

1

2
(1− λ2)‖βr,d‖22 + λ2‖βr,d‖1.

Let ρ̃r,d = log ρr,d, then the above optimization problem (11) becomes

arg min
ρ̃r,d, d∈{d:‖βr,d‖2 6=0}

D∑
d=1

1

2
(1− λ2)‖βr,d‖22 exp2(ρ̃r,d) + λ2‖βr,d‖1 exp(ρ̃r,d)

s.t.
D∑
d=1

ρ̃r,d = 0,

(B.1)

which is a convex problem. Using the Lagrangian method and Newton’s method, we can get
the solution.

B.3 Proof of Proposition 1

Suppose θρ = (ν̃,Bρ1 , . . . ,B
ρ
D, B̃D+1) ∈ Θ(θ), then there exists {ρr,d}r,d satisfying

∏
d ρr,d =

1, ρr,d > 0 for r = 1, . . . , R such that Bρd = (ρ1,dβ1,d, . . . , ρR,dβR,d) for d = 1, . . . , D. By
definition, for each r = 1, . . . , R

Gr({ρ̂r,dβr,d}d, λ2) ≤ Gr({ρr,dβr,d}d, λ2),
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thus
LG(θ̄) ≤ LG(θρ).

Note that (B.1) is a strictly convex problem if βr,d 6= 0 for r = 1, . . . , R, d = 1, . . . , D. Thus
θ̄ is the unique minimizer in Θ(θ) and we complete the proof.

B.4 Proof of Proposition 2

We first note that with our rescaling strategy, the objective function is non-increase after each
iteration in our algorithm. Using the same arguments of Proposition 1 of Zhou et al. (2013),
we can get the desired result.

C Identifiability

It is noted that our theory does not require the identifiability for each component in (3). For
completeness, we discuss the following identifiable problems. To begin with, we state the
uniqueness of the representation (3), which means that (3) is the only possible combination of
the coefficients and functions under the minimal R components. There are three complications
that result in the indeterminacy, where two of them are similar to that of CP decomposition.
The first is about permutation and scaling, i.e.,

1. Permutation and scaling. Permutation means that the summation of CP components
can be permuted, i.e.,

m(X) = ν +
1

s

∑
r∈{1,...,R}

〈βr,1 ◦ βr,2 ◦ · · · ◦ βr,D, Fr(X)〉 ,

while scaling means that for any constant C 6= 0,〈
Cβr,1 ◦ βr,2 ◦ · · · ◦ βr,D,

1

C
Fr(X)

〉
= 〈βr,1 ◦ βr,2 ◦ · · · ◦ βr,D, Fr(X)〉 ,

where the scale C can also shift among {βr,d}Dd=1.

The second is another possible combination of functions and the corresponding coefficients
that can also represent m(X) in (3), with the exception of permutation and scaling, i.e.,

2. Another possible combination. m(X) can also be represented by

m(X) = ν +
1

s

R∑
r=1

〈
β̄r,1 ◦ β̄r,2 ◦ · · · ◦ β̄r,D, F̄r(X)

〉
.

This other combination is possible. For example, let

F̄1(X) = . . . = F̄R(X) = F1(X) = . . . = FR(X),

and

B =

R∑
r=1

βr,1 ◦ βr,2 ◦ · · · ◦ βr,D.
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Due to the non-uniqueness of CP decomposition of a tensor with rank R in general
(Kolda and Bader, 2009), there is another rank decomposition for some B (see, e.g.,
Stegeman and Sidiropoulos, 2007), which will lead another combination to represent
m(X).

Besides, the constant shift also brings the indeterminacy.

3. Constant shift. For a constant C and a tensor J ∈ Rp1×···×pD of which all the entries
are 1,

〈βr,1 ◦ βr,2 ◦ · · · ◦ βr,D, Fr(X)− CJ〉 = 〈βr,1 ◦ βr,2 ◦ · · · ◦ βr,D, Fr(X)〉+ C ′,

where C ′ is a constant that can shift to the intercept ν of the model (3).

To avoid constant shift, we let
∫ 1

0 fr(x)dx = 0. This setting will not affect the expressive
ability of the model (3). Now, we define the identifiability rigorously.

Definition 4 (Identifiability). Suppose fr ∈ F , where F = {f :
∫ 1

0 f(x)dx = 0, f ∈ C([0, 1])},
r = 1, . . . , R and {fr}Rr=1 is the minimal representation to make (3) hold. The minimal
representation means that there does not exist one of the following two representations for
m(X), i.e.,

i. m(X) = ν̄ + 1
s

∑R̄
r=1

〈
β̄r,1 ◦ β̄r,2 ◦ · · · ◦ β̄r,D, F̄r(X)

〉
,

where ν̄ ∈ R, β̄r,d ∈ Rpd×R̄, (F̄r(X))i1,...,iD = f̄r(Xi1,...,iD) ∈ F and R̄ < R, or

ii. m(X) = ν̃ + 1
s

∑R
r=1

〈
β̃r,1 ◦ β̃r,2 ◦ · · · ◦ β̃r,D, F̃r(X)

〉
,

where ν̃ ∈ R, β̃r,d ∈ Rpd×R̄, (F̃r(X))i1,...,iD = f̃r(Xi1,...,iD) ∈ F and Span{f̃r}Rr=1 ( Span{fr}Rr=1.
We say the representation is identifiable if the components are unique up to permutation and
scaling. To be more specific, if

m(X) = ν +
1

s

R∑
r=1

〈βr,1 ◦ βr,2 ◦ · · · ◦ βr,D, Fr(X)〉

= ν̄ +
1

s

R∑
r=1

〈
β̄r,1 ◦ β̄r,2 ◦ · · · ◦ β̄r,D, F̄r(X)

〉
,

then ν = ν̄, and {(βr,1,βr,2, · · · ,βr,D, Fr(X))}Rr=1 and {(β̄r,1, β̄r,2, · · · , β̄r,D, F̄r(X))}Rr=1 are
the same up to scaling.

So far, we have demonstrated the identifiability issues and given the definition of identifia-
bility with respect to the representation (3). We then list some sufficient conditions to achieve
the identifiability, based on the fundamental idea of the identifiability for CP decomposition.
Denote

Bd = (β1,d, . . . ,βR,d) d = 1, . . . , D,

and kBd
the k-rank of Bd, which is defined as the maximum value k such that any k columns

are linearly independent (Kruskal, 1977; Harshman, 1984). Then the following conditions in
the two cases are sufficient to achieve the identifiability.
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Case 1. Require that {fr(x)}Rr=1 is linearly independent.

i. If
∑D

d=1 kBd
≥ R + D, then the decomposition (3) is unique up to permutation and

scaling.

ii. If D = 2 and R(R− 1) ≤ p1(p1 − 1)p2(p2 − 1)/2, then the decomposition (3) is unique
up to permutation and scaling for almost all such tensors except on a set of Lebesgue
measure zero.

iii. If D = 3 and R(R − 1) ≤ p1p2p3(3p1p2p3 − p1p2 − p1p3 − p2p3 − p1 − p2 − p3 + 3)/4,
then the decomposition (3) is unique up to permutation and scaling for almost all such
tensors except on a set of Lebesgue measures zero.

Case 2. Not require that {fr(x)}Rr=1 is linearly independent.

iv. (General) If
∑D

d=1 kBd
≥ 2R + D − 1, then the decomposition (3) is unique up to

permutation and scaling.

For simplicity, we present the general condition in the following theorem. In the proof of
Theorem 4, we in fact prove all the aforementioned sufficient conditions.

Theorem 4 (Identifiability). If

D∑
d=1

kBd
≥ 2R+D − 1, (B.2)

then the representation (3) is unique up to permutation and scaling.

Proof. Suppose there is another representation of (3), i.e,

m(X) = ν +
1

s

R∑
r=1

〈βr,1 ◦ βr,2 ◦ · · · ◦ βr,D, Fr(X)〉

= ν̄ +
1

s

R∑
r=1

〈
β̄r,1 ◦ β̄r,2 ◦ · · · ◦ β̄r,D, F̄r(X)

〉
,

(B.3)

where
(Fr(X))i1i2···iD = fr(Xi1i2···iD) and (F̄r(X))i1i2···iD = f̄r(Xi1i2···iD),

with fr, f̄r ∈ F , r = 1, . . . , R. We will show ν̄ = ν, as well as βr,d and β̄r,d, fr and f̄r,
r = 1, . . . , R, d = 1, . . . , D, are the same up to permutation and scaling under some conditions,
respectively.

Using the definition of F, such as
∫ 1

0 f(x)dx = 0 for f ∈ F , we can obtain ν = ν̄ by
integration over the domain of X in (B.3). In the remaining sum of inner products, we
consider the following arguments. Suppose the minimal bases of the vector space

Span{fr(x), r = 1, . . . , R} and Span{f̄r(x), r = 1, . . . , R}
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are {ψk?(x)}K?

k?=1 and {ψ̄k̄?(x)}K̄?

k̄?=1
, respectively. In other words, each fr and f̄r can be written

in a unique way as a linear combination of {ψk?(x)}K?

k?=1 and {ψ̄k̄?(x)}K̄?

k̄?=1
, respectively. To

be more specific,

fr(x) =
K?∑
k?=1

ηr,k?ψk?(x) and f̄r(x) =
K̄?∑
k̄?=1

η̄r,k̄?ψ̄k̄?(x).

For notational convenience, we let Ψ(X)j,k? = ψk?(Xj), k? = 1, . . . ,K? and Ψ̄(X)j,k̄? =
ψ̄k̄?(Xj), k̄? = 1, . . . , K̄?, where j ∈ J . We also denote

Af =
1

s

R∑
r=1

βr,1 ◦ βr,2 ◦ · · · ◦ βr,D ◦ ηr, (B.4)

and

Āf =
1

s

R∑
r=1

β̄r,1 ◦ β̄r,2 ◦ · · · ◦ β̄r,D ◦ η̄r, (B.5)

where ηr = (ηr,1, · · · , ηr,K)ᵀ and η̄r = (η̄r,1, · · · , η̄r,K)ᵀ, for r = 1, . . . , R. Since we have
shown ν = ν̄ in the previous arguments, it is trivial to see that the remaining summation of
CP components in (B.3) equals, i.e.,〈

Af ,Ψ(X)
〉

=
〈
Āf , Ψ̄(X)

〉
. (B.6)

The rest of proof includes three steps. At first, we will show

Span{ψk?(x)}K?

k?=1 = Span{ψ̄k̄?(x)}K̄?

k̄?=1. (B.7)

Based on (B.7), we can chose {ψ̄k̄?(x)}K̄?

k̄?=1
= {ψk?(x)}K?

k?=1 and rewrite (B.6) as〈
Af ,Ψ(X)

〉
=
〈
Āf ,Ψ(X)

〉
. (B.8)

Secondly, we will show Af = Āf in (B.8). In the end, we will take the advantages of
identifiable theory about CP decomposition and complete the proof.

To show (B.7), we assume there exists k0 such that ψ̄k0(x) is linearly independent of
{ψk?(x)}K?

k?=1. For each j ∈ J , we take integration for other predictors over their domain,
then by Lemma A.1, we get

K?∑
k?=1

Afj,k?ψk?(Xj)−
K̄?∑

k̄? 6=k0

Āf
j,k̄?

ψ̄k̄?(Xj)− Āfj,k0ψ̄k0(Xj) = 0,

for Xj ∈ [0, 1]. Note that ψ̄k0(x) is independent of {ψk?(x)}K?

k?=1 and {ψ̄k̄?(x)}i 6=k0 , then
Āfj,k0 = 0, for j ∈ J . Assume there exists r0 such that η̄r0,k0 6= 0, then there exists {f̃r}Rr=1,
where f̃r(x) =

∑
k? 6=k0 η̄r,k?ψ̄i(x) and Span{f̃r}Rr=1 ( Span{fr}Rr=1, such the representation

(3) holds. This does not agree with the minimal representation assumption. As a result,
η̄r,k0 = 0 for r = 1, . . . , R, then {f̄r(x)}Rr=1 can be represented by {ψ̄k?(x)}k? 6=k0 , which leads
a contradiction to that {ψ̄k̄?(x)}K̄?

k̄?=1
is a minimal basis. Therefore (B.7) holds and K̄? = K?.
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To show Af = Āf in (B.8), we let Af,? = Af − Āf . It implies that〈
Af,?,Ψ(X)

〉
= 0,

for all X. Assuming Af,? 6= 0, there exists j0 ∈ J such that (Af,?j0,1, . . . , A
f,?
j0,K?) 6= 0. We fix

{Xj}j 6=j0 at some values and denote the corresponding value

C−j0 =
∑
j 6=j0

K?∑
k?=1

Af,?j,k?fk?(Xj).

It then shows that
K?∑
k?=1

Af,?j0,k?ψk?(Xj0) + C−j0 = 0, (B.9)

for Xj0 ∈ [0, 1]. By integration over Xj0 on both sides, we obtain

K?∑
k?=1

Af,?j0,i?wk? + C−j0 = 0,

where wk? =
∫ 1

0 ψk?(x)dx, k? = 1, . . . ,K?. By Lemma A.1,
∑K?

k?=1A
f,?
j0,k?

wk? = 0, which
implies C−j0 = 0. Combining the independence and (B.9) yields Af,?j0,k? = 0 for k? = 1, . . . ,K?.
Thus Af,? = 0 and we have Af = Āf .

Since R is the minimal, (B.4) is a rank decomposition of Af . We can claim that if the rank
decomposition of Af is unique up to permutation and scaling, then the representation (3) is
unique up to scaling and permutation. To see this, we can assume the rank decomposition
of Af is unique up to permutation and scaling. Thus the decomposition (B.5) and the
decomposition (B.4) are the same up to permutation and scaling. Therefore the representation
(3) is unique up to permutation and scaling. Now, to make the representation (3) unique up
to permutation and scaling, we can use the common arguments about the uniqueness of
rank decomposition. Recall that Bd = (β1,d, . . . ,βR,d), d = 1, . . . , D and the k-rank of a
matrix Bd, denoted as kBd

, is defined as the maximum value k such that any k columns are
linearly independent. For convenience, we write BD+1 := η = (η1, · · · ,ηR) and let kBD+1

be its k-rank. To make the CP decomposition of Af unique, we have the following sufficient
conditions

1. (General) (Sidiropoulos and Bro, 2000) The decomposition (B.4) is unique up to per-
mutation and scaling if

∑D+1
d=1 kBd

≥ 2R+D.

2. (De Lathauwer, 2006) When D+1 = 3, R ≤ K and R(R−1) ≤ p1(p1−1)p2(p2−1)/2,
the decomposition (B.4) is unique up to permutation and scaling for almost all such
tensors except on a set of Lebesgue measure zero.

3. (De Lathauwer, 2006) When D+1 = 4, R ≤ K and R(R−1) ≤ p1p2p3(3p1p2p3−p1p2−
p1p3− p2p3− p1− p2− p3 + 3)/4, the decomposition (B.4) is unique up to permutation
and scaling for almost all such tensors except on a set of Lebesgue measures zero.

Now we consider two cases, i.e,
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Case 1. If {fr(x)}Rr=1 is linearly independent, then kBD+1
= R. We have the following suffi-

cient conditions.

i. If
∑D

d=1 kBd
≥ R + D, then the decomposition (3) is unique up to permutation and

scaling.

ii. If D = 2 and R(R− 1) ≤ p1(p1 − 1)p2(p2 − 1)/2, then the decomposition (3) is unique
up to permutation and scaling for almost all such tensors except on a set of Lebesgue
measure zero.

iii. If D = 3 and R(R − 1) ≤ p1p2p3(3p1p2p3 − p1p2 − p1p3 − p2p3 − p1 − p2 − p3 + 3)/4,
then the decomposition (3) is unique up to permutation and scaling for almost all such
tensors except on a set of Lebesgue measures zero.

Case 2. If we do not know whether {fr(x)}Rr=1 is linearly independent or not, we can also use
the fact that kBD+1

≥ 1, which yields the following general sufficient condition.

iv. (General) If
∑D

d=1 kBd
≥ 2R + D − 1, then the decomposition (3) is unique up to

permutation and scaling.

Since {fr}Rr=1 are allowed to be the same in the model, we present the forth sufficient condition,
i.e.,

D∑
d=1

kBd
≥ 2R+D − 1,

which is also used as a condition to make the tensor linear model identifiable (Zhou et al.,
2013).

D Starting points

Motivated by the initial point strategy used in the MATLAB toolbox TensorReg, we propose a
sequential down-sizing strategy. For the penalized tensor linear regression, TensorReg applies
the unpenalized tensor linear regression on a down-sized sample first. The down-sized sample
depends on a shrinkage parameter ϑ = n/(CR

∑D
d=1 pd), where C is a constant supplied

by users. If ϑ ≤ 1, the down-sized sample is just the original sample (Xi, yi); if not, Xi ∈
Rp1×···×pD is down-sized to a smaller tensor of size p̃1 × . . .× p̃D, where p̃d = bpd/ϑc. Secondly,
transform the solution of coefficient tensor of the previous unpenalized method back to the
original size, and then run the penalized algorithm.

Our sequential down-sizing procedure refers to considering a sequential down-size p̃(1)
1 ×· · ·

×p̃(1)
D ×K, p̃(2)

1 × · · · × p̃
(2)
D ×K, · · · , p̃(η)

1 × · · · × p̃
(η)
D ×K of the samples in the initial stage.

Here we can choose {p(t)
d }

η
t=1 ⊂ (C, pd) ∩ N as an arithmetic sequence, where C is a constant

defined by users. Firstly, we use random initial points for the unpenalized tensor regression
on the down-size sample with size of p̃(1)

1 × · · · × p̃(1)
D × K, and then use the results of the

unpenalized tensor regression under the size of p̃(i)
1 × · · · × p̃

(i)
D ×K as the initial points (after

up-size) for that of p̃(i+1)
1 × . . .× p̃(i+1)

D ×K, where 1 ≤ i < η. Finally, use the results (after
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up-size) under the size of p̃(η)
1 × · · · × p̃(η)

D × K as the final initial points for the penalized
method.

In the grids search procedure, when R and λ2 are fixed, we apply the sequential down-
sizing initial strategy to the smallest λ1 in the grids, and then use the results as the initial
points of the second smallest λ1 in grids. Next, we use the new results as the initial points of
the third smallest λ1 and repeat this procedure for all values of λ1.

E Grids of tuning parameters

In synthetic experiments, we considered the following grids: R ∈ {1, 2, 3, 4, 5}, λ1 ∈ {10−2, 5×
10−1, 10−1, . . . , 102, 5 × 102, 103} and λ2 ∈ {0, 0.5, 1}, for BroadcasTR, TLR, and TLR-
rescaled. For ENetR, we used the same grids of λ1 and λ2. For BroadcasTR, similar to
Huang et al. (2010), we used the cubic spline and fixed the number of basis K = 7. The knots
were chosen as the equally spaced quantiles.

In the real data analysis, we considered the following grids for the rank R ∈ {1, 2, 3, 4,
5, 6, 7, 8}, and penalized parameters λ1 ∈ {10−2, 2.5 × 10−2, 5 × 10−2, 7.5 × 10−2, 10−1, . . .,
102, 2.5 × 102, 5 × 102, 7.5 × 102, 103}, λ2 ∈ {0, 0.5, 1} for BroadcasTR, TLR, TLR-rescaled,
and the same grids of λ1 and λ2 for ENetR. We used the same spline basis setting as in the
previous synthetic experiments for BroadcasTR.

F Data preprocessing of monkey’s electrocorticography data

Our data preprocessing procedure is similar to Chao et al. (2010) and Shimoda et al. (2012).
Firstly, the original signals were band-pass filtered from 0.3 to 499Hz and re-referenced using
a common average reference montage (McFarland et al., 1997). Secondly, we use Morlet
wavelet transformation to get the time-frequency representation at time t, where there are
ten different center frequencies (20Hz, 30Hz, ..., 110 Hz) and ten time lags (t − 900ms, t −
800ms, . . . , t − 100ms, t). Finally, after a standardization step (z-score) at each frequency
over the 10 time lags for each electrode, we get our input tensor of size 64 × 10 × 10, such
that the values of each entry lie in I = [−2.75, 2.85].
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