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Abstract

Representation learning over graph structured data has been mostly studied in static
graph settings while efforts for modeling dynamic graphs are still scant. In this
paper, we develop a novel hierarchical variational model that introduces additional
latent random variables to jointly model the hidden states of a graph recurrent
neural network (GRNN) to capture both topology and node attribute changes in
dynamic graphs. We argue that the use of high-level latent random variables in
this variational GRNN (VGRNN) can better capture potential variability observed
in dynamic graphs as well as the uncertainty of node latent representation. With
semi-implicit variational inference developed for this new VGRNN architecture (SI-
VGRNN), we show that flexible non-Gaussian latent representations can further
help dynamic graph analytic tasks. Our experiments with multiple real-world
dynamic graph datasets demonstrate that SI-VGRNN and VGRNN consistently
outperform the existing baseline and state-of-the-art methods by a significant
margin in dynamic link prediction.

1 Introduction

Node embedding maps each node in a graph to a vector in a low-dimensional latent space, in which
classical feature vector-based machine learning formulations can be adopted [5]. Most of the existing
node embedding techniques assume that the graph is static and that learning tasks are performed
on fixed sets of nodes and edges [19, 23, 12, 20, 14, 1]. However, many real-world problems are
modeled by dynamic graphs, where graphs are constantly evolving over time. Such graphs have been
typically observed in social networks, citation networks, and financial transaction networks. A naive
solution to node embedding for dynamic graphs is simply applying static methods to each snapshot of
dynamic graphs. Among many potential problems of such a naive solution, it is clear that it ignores
the temporal dependencies between snapshots.

Several node embedding methods have been proposed to capture the temporal graph evolution for
both networks without attributes [10, 26] and attributed networks [24, 16]. However, all of the
existing dynamic graph embedding approaches represent each node by a deterministic vector in
a low-dimensional space [2]. Such deterministic representations lack the capability of modeling
uncertainty of node embedding, which is a natural consideration when having multiple information
sources, i.e. node attributes and graph structure.

In this paper, we propose a novel node embedding method for dynamic graphs that maps each node to
a random vector in the latent space. More specifically, we first introduce a dynamic graph autoencoder
model, namely graph recurrent neural network (GRNN), by extending the use of graph convolutional
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neural networks (GCRN) [21] to dynamic graphs. Then, we argue that GRNN lacks the expressive
power for fully capturing the complex dependencies between topological evolution and time-varying
node attributes because the output probability in standard RNNs is limited to either a simple unimodal
distribution or a mixture of unimodal distributions [3, 22, 6, 8]. Next, to increase the expressive
power of GRNN in addition to modeling the uncertainty of node latent representations, we propose
variational graph recurrent neural network (VGRNN) by adopting high-level latent random variables
in GRNN. Our proposed VGRNN is capable of learning interpretable latent representation as well as
better modeling of very sparse dynamic graphs.

To further boost the expressive power and interpretability of our new VGRNN method, we integrate
semi-implicit variational inference [25] with VGRNN. We show that semi-implicit variational graph
recurrent neural network (SI-VGRNN) is capable of inferring more flexible and complex posteriors.
Our experiments demonstrate the superior performance of VGRNN and SI-VGRNN in dynamic link
prediction tasks in several real-world dynamic graph datasets compared to baseline and state-of-the-art
methods.

2 Background

Graph convolutional recurrent networks (GCRN). GCRN was introduced by Seo et al. [21]
to model time series data defined over nodes of a static graph. Series of frames in videos and
spatio-temporal measurements on a network of sensors are two examples of such datasets. GCRN
combines graph convolutional networks (GCN) [4] with recurrent neural networks (RNN) to capture
spatial and temporal patterns in data. More precisely, given a graph G with N nodes, whose
topology is determined by the adjacency matrix A ∈ RN×N , and a sequence of node attributes
X = {X(1),X(2), . . . ,X(T )}, GCRN reads M -dimensional node attributes X(t) ∈ RN×M and
updates its hidden state ht ∈ Rp at each time step t:

ht = f
(

A,X(t),ht−1

)
. (1)

Here f is a non-probabilistic deep neural network. It can be any recursive network including gated
activation functions such as long short-term memory (LSTM) or gated recurrent units (GRU), where
the deep layers inside them are replaced by graph convolutional layers. GCRN models node attribute
sequences by parameterizing a factorization of the joint probability distribution as a product of
conditional probabilities such that

p
(

X(1),X(2), . . . ,X(T ) |A
)
=

T∏
t=1

p
(

X(t) | X(<t),A
)
; p

(
X(t) | X(<t),A

)
= g(A,ht−1).

Due to the deterministic nature of the transition function f , the choice of the mapping func-
tion g here effectively defines the only source of variability in the joint probability distributions
p(X(1),X(2), . . . ,X(T ) |A) that can be expressed by the standard GCRN. This can be problematic
for sequences that are highly variable. More specifically, when the variability of X is high, the
model tries to map this variability in hidden states h, leading to potentially high variations in h and
thereafter overfitting of training data. Therefore, GCRN is not fully capable of modeling sequences
with high variations. This fundamental problem of autoregressive models has been addressed for
non-graph-structured datasets by introducing stochastic hidden states to the model [7, 3, 9].

In this paper, we integrate GCN and RNN into a graph RNN (GRNN) framework, which is a dynamic
graph autoencoder model. While GCRN aims to model dynamic node attributes defined over a static
graph, GRNN can get different adjacency matrices at different time snapshots and reconstruct the
graph at time t by adopting an inner-product decoder on the hidden state ht. More specifically, ht
can be viewed as node embedding of the dynamic graph at time t. To further improve the expressive
power of GRNN, we introduce stochastic latent variables by combining GRNN with variational graph
autoencoder (VGAE) [14]. This way, not only we can capture time dependencies between graphs
without making smoothness assumption, but also each node is represented with a distribution in the
latent space. Moreover, the prior construction devised in VGRNN allows it to predict links in the
future time steps.

Semi-implicit variational inference (SIVI). SIVI has been shown effective to learn posterior distri-
butions with skewness, kurtosis, multimodality, and other characteristics, which were not captured

2



by the existing variational inference methods [25]. To characterize the latent posterior q(z|x), SIVI
introduces a mixing distribution on the parameters of the original posterior distribution to expand
the variational family with a hierarchical construction: z ∼ q(z|ψ) with ψ ∼ qφ(ψ). φ denotes
the distribution parameter to be inferred. While the original posterior q(z|ψ) is required to have
an analytic form, its mixing distribution is not subject to such a constraint, and so the marginal
posterior distribution is often implicit and more expressive that has no analytic density function.
It is also common that the marginal of the hierarchy is implicit, even if both the posterior and its
mixing distribution are explicit. We will integrate SIVI in our new model to infer more flexible and
interpretable node embedding for dynamic graphs.

3 Variational graph recurrent neural network (VGRNN)

3.1 Overview

We consider a dynamic graph G = {G(1), G(2), . . . , G(T )} where G(t) = (V(t), E(t)) is the graph at
time step t with V(t) and E(t) being the corresponding node and edge sets, respectively. In this paper,
we aim to develop a model that is universally compatible with potential changes in both node and
edge sets. In particular, the cardinality of both V(t) and E(t) can change across time. There are no
constraints on the relationships between (V(t), E(t)) and (V(t+1), E(t+1)), namely new nodes can join
the dynamic graph and create edges to the existing nodes or previous nodes can disappear from the
graph. On the other hand, new edges can form between snapshots while existing edges can disappear.
Let Nt denotes the number of nodes , i.e., the cardinality of V(t), at time step t. Therefore, VGRNN
can take as input a variable-length adjacency matrix sequence A = {A(1),A(2), . . . ,A(T )}. In
addition, when considering node attributes, different attributes can be observed at different snapshots
with a variable-length node attribute sequence X = {X(1),X(2), . . . ,X(T )}. Note that A(t) and X(t)

are Nt×Nt and Nt×M matrices, respectively, where M is the dimension of the node attributes that
is constant across time. Inspired by variational recurrent neural networks (VRNN) [3], we construct
VGRNN by integrating GRNN and VGAE so that complex dependencies between topological and
node attribute dynamics are modeled sufficiently and simultaneously. Moreover, each node at each
time is represented with a distribution, hence uncertainty of latent representations of nodes are also
modelled in VGRNN.

3.2 VGRNN model

Generation. The VGRNN model adopts a VGAE to model each graph snapshot. The VGAEs
across time are conditioned on the state variable ht−1, modeled by a GRNN. Such an architecture
design will help each VGAE to take into account the temporal structure of the dynamic graph. More
critically, unlike a standard VGAE, our VGAE in VGRNN takes a new prior on the latent random
variables by allowing distribution parameters to be modelled by either explicit or implicit complex
functions of information of the previous time step. More specifically, instead of imposing a standard
multivariate Gaussian distribution with deterministic parameters, VGAE in our VGRNN learns the
prior distribution parameters based on the hidden states in previous time steps. Hence, our VGRNN
allows more flexible latent representations with greater expressive power that captures dependencies
between and within topological and node attribute evolution processes. In particular, we can write the
construction of the prior distribution adopted in our experiments as follows,

p
(

Z(t)
)
=

Nt∏
i=1

p
(

Z(t)
i

)
; Z(t)

i ∼ N
(
µ

(t)
i,prior, diag((σ(t)

i,prior)
2)
)
,
{
µ

(t)
prior,σ

(t)
prior

}
= ϕprior(ht−1),

(2)
where µ(t)

prior ∈ RNt×l and σ(t)
prior ∈ RNt×l denote the parameters of the conditional prior distribution,

and µ(t)
i,prior and σ(t)

i,prior are the i-th row of µ(t)
prior and σ(t)

prior, respectively. Moreover, the generating

distribution will be conditioned on Z(t) as:

A(t) |Z(t) ∼ Bernoulli
(
π(t)
)
, π(t) = ϕdec

(
Z(t)

)
, (3)

where π(t) denotes the parameter of the generating distribution; ϕprior and ϕdec can be any highly
flexible functions such as neural networks.
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Figure 1: Graphical illustrations of each operation of VGRNN; (a) computing the conditional prior
by (2); (b) decoder function (3); (c) updating the GRNN hidden states using (4); and (d) inference of
the posterior distribution for latent variables by (3.2).

On the other hand, the backbone GRNN enables flexible modeling of complex dependency involving
both graph topological dynamics and node attribute dynamics. The GRNN updates its hidden states
using the recurrence equation:

ht =f
(

A(t), ϕx
(

X(t)
)
, ϕz

(
Z(t)

)
,ht−1

)
, (4)

where f is originally the transition function from equation (1). Unlike the GRNN defined in [21],
graph topology can change in different time steps as it does in real-world dynamic graphs, and the
adjacency matrix A(t) is time dependent in VGRNN. To further enhance the expressive power, ϕx

and ϕz are deep neural networks which operate on each node independently and extract features
from X(t) and Z(t), respectively. These feature extractors are crucial for learning complex graph
dynamics. Based on (4), ht is a function of A≤(t), X≤(t), and Z≤(t). Therefore, the prior and
generating distributions in equations (2) and (3) define the distributions p(Z(t) |A(<t),X(<t),Z(<t))

and p(A(t) |Z(t)), respectively. The generative model can be factorized as

p
(

A(≤T ),Z(≤T ) |X(<T )
)
=

T∏
t=1

p
(

Z(t) |A(<t),X(<t),Z(<t)
)
p
(

A(t) |Z(t)
)
, (5)

where the prior of the first snapshot is considered to be a standard multivariate Gaussian distribution,
i.e. p(Z(0)

i | −) ∼ N (0, I) for i ∈ {1, . . . , N0} and h0 = 0. Also, if a previously unobserved node is
added to the graph at snapshot t, we consider the hidden state of that node at snapshot t− 1 is zero
and hence the prior for that node at time t is N (0, I). If node deletion occurs, we assume that the
identity of nodes can be maintained thus removing a node, which is equivalent to removing all the
edges connected to it, will not affect the prior construction for the next step. More specifically, the
sizes of A and X can change in time while their latent space maintains across time.

Inference. With the VGRNN framework, the node embedding for dynamic graphs can be derived
by inferring the posterior distribution of Z(t) which is also a function of ht−1. More specifically,

q
(

Z(t) |A(t),X(t),ht−1

)
=

Nt∏
i=1

q
(

Z(t)
i |A

(t),X(t),ht−1

)
=

Nt∏
i=1

N
(
µ

(t)
i,enc, diag((σ(t)

i,enc)
2)
)
,

µ(t)
enc = GNNµ

(
A(t),CONCAT

(
ϕx
(

X(t)
)
,ht−1

))
,

σ(t)
enc = GNNσ

(
A(t),CONCAT

(
ϕx
(

X(t)
)
,ht−1

))
, (6)

where µ(t)
enc and σ(t)

enc denote the parameters of the approximated posterior, and µ(t)
i,enc and σ(t)

i,enc are

the i-th row of µ(t)
enc and σ(t)

enc, respectively. GNNµ and GNNσ are the encoder functions and can be
any of the various types of graph neural networks, such as GCN [15], GCN with Chebyshev filters
[4] and GraphSAGE [13].
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Learning. The objective function of VGRNN is derived from the variational lower bound at each
snapshot. More precisely, using equation (5) , the evidence lower bound of VGRNN can be written
as follows,

L =

T∑
t=1

{
EZ(t)∼q(Z(t) |A(≤t),X(≤t),Z(<t))log p

(
A(t) |Z(t)

)
−KL

(
q
(

Z(t) |A(≤t),X(≤t),Z(<t)
)
|| p
(

Z(t) |A(<t),X(<t),Z(<t)
))}

.

(7)

We learn the parameters of the generative and inference models jointly by optimizing the variational
lower bound with respect to the variational parameters. The graphical representation of VGRNN is
illustrated in Fig. 1, operations (a)–(d) correspond to equations (2) – (4), and (3.2), respectively. We
note that if we don’t use hidden state variables ht−1 in the derivation of the prior distribution, then
the prior in (2) becomes independent across snapshots and reduces to the prior of vanilla VGAE.

The inner-product decoder is adopted in VGRNN for the experiments in this paper– ϕdec in (3)–to
clearly demonstrate the advantages of the stochastic recurrent models for the encoder. Potential
extensions with other decoders can be integrated with VGRNN if necessary. More specifically,

p
(

A(t) |Z(t)
)
=

Nt∏
i=1

Nt∏
j=1

p
(
(A

(t)
i,j | z

(t)
i , z(t)

j

)
; p
(
A

(t)
i,j = 1 | z(t)

i , z(t)
j

)
= sigmoid

(
z(t)
i (z(t)

j )T
)
,

(8)
where z(t)

i corresponds to the embedding representation of node v(t)
i ∈ V(t) at time step t. Note the

generating distribution can also be conditioned on ht−1 if we want to generate X(t) in addition to
the adjacency matrix for other applications. In such cases, ϕdec should be a highly flexible neural
network instead of a simple inner-product function.

3.3 Semi-implicit VGRNN (SI-VGRNN)

To further increase the expressive power of the variational posterior of VGRNN, we introduce a
SI-VGRNN dynamic node embedding model. We impose a mixing distributions on the variational
distribution parameters in (8) to model the posterior of VGRNN with a semi-implicit hierarchical
construction:

Z(t) ∼ q(Z(t) |ψt), ψt ∼ qφ(ψt |A
(≤t),X(≤t),Z(<t)) = qφ(ψt|A

(t),X(t),ht−1). (9)

While the variational distribution q(Z(t) |ψt) is required to be explicit, the mixing distribution, qφ, is
not subject to such a constraint, leading to considerably flexible Eψt∼qφ(ψt|A(t),X(t),ht−1)(q(zt|ψt)).
More specifically, SI-VGRNN draws samples from qφ by transforming random noise εt via a graph
neural network, which generally leads to an implicit distribution for qφ.

Inference. Under the SI-VGRNN construction, the generation, prior and recurrence models are the
same as VGRNN (equations (2) to (5)). We indeed have updated the encoder functions as follows:

`
(t)
j = GNNj(A(t),CONCAT(ht−1, ε

(t)
j , `

(t)
j−1)); ε

(t)
j ∼ qj(ε) for j = 1, . . . , L, `

(t)
0 = ϕx

τ

(
X(t)

)
µ(t)

enc(A
(t),X(t),ht−1) = GNNµ(A(t), `

(t)
L ), Σ(t)

enc(A
(t),X(t),ht−1) = GNNΣ(A(t), `

(t)
L ),

q(Z(t)
i |A

(t),X(t),ht−1,µ
(t)
i,enc,Σ

(t)
i,enc) = N (µ

(t)
i,enc(A

(t),X(t),ht−1),Σ
(t)
i,enc(A

(t),X(t),ht−1)),

where L is the number of stochastic layers and ε(t)
j is Nt-dimensional random noise drawn from a

distribution qj with Nt denoting number of nodes at time t. Note that given {A(t),X(t),ht−1}, µ(t)
i,enc

and Σ
(t)
i,enc are now random variables rather than analytic and thus the posterior is not Gaussian after

marginalizing.
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Table 1: Dataset statistics.

Metrics Enron COLAB Facebook HEP-TH Cora Social Evolution
Number of Snapshots 11 10 9 40 11 27

Number of Nodes 184 315 663 1199-7623 708-2708 84
Number of Edges 115-266 165-308 844-1068 769-34941 406-5278 303-1172
Average Density 0.01284 0.00514 0.00591 0.00117 0.00154 0.21740

Number of Node Attributes - - - - 1433 168

Learning. In this construction, because the parameters of the posterior are random variables, the
ELBO goes beyond the simple VGRNN in (7) and can be written as

L =

T∑
t=1

{
Eψt∼qφ(ψt|A(t),X(t),ht−1)EZ(t)∼q(Z(t) |ψt)

log
(
p(A(t) |Z(t),ht−1)

)
−KL

(
Eψt∼qφ(ψt|A(t),X(t),ht−1)q

(
Z(t) |ψt

)
|| p(Z(t) |ht−1)

)}
.

(10)

Direct optimization of the ELBO in SIVI is not tractable [25], hence to infer variational parameters
of SI-VGRNN, we derive a lower bound for the ELBO as follows (see the supplements for more
details.).

L =

T∑
t=1

Eψt∼qφ(ψt|A(t),X(t),ht−1)EZ(t)∼q(Z(t) |ψt)
log

(
p(A(t) |Z(t),ht−1) p(Z(t) |ht−1)

q(Z(t) |ψt)

)
.

(11)

4 Experiments

Datasets. We evaluate our proposed methods, VGRNN and SI-VGRNN, and baselines on six
real-world dynamic graphs as described in Table 1. More detailed descriptions of the datasets can be
found in the supplement.

Competing methods. We compare the performance of our proposed methods against four com-
peting node embedding methods, three of which have the capability to model evolving graphs with
changing node and edge sets. Among these four, two (DynRNN and DynAERNN [11]) are based
on RNN models. By comparing our models to these methods, we will be able to see how much
improvement we may obtain by improving the backbone RNN with our new prior construction
compared to these RNNs with deterministic hidden states. We also compare our methods against a
deep autoencoder with fully connected layers (DynAE [11]) to show the advantages of RNN based
sequential learning methods. Last but not least, our methods are compared with VGAE [14], which
is implemented to analyze each snapshot separately, to demonstrate how temporal dependencies
captured through hidden states in the backbone GRNN can improve the performance. More detailed
descriptions of these selected competing methods are described in the supplements.

Evaluation tasks. In the dynamic graph embedding literature, the term link prediction has been
used with different definitions. While some of the previous works focused on link prediction in
a transductive setting and others proposed inductive models, our models are capable of working
in both settings. We evaluate our proposed models on three different link prediction tasks that
have been widely used in the dynamic graph representation learning studies. More specifically,
given partially observed snapshots of a dynamic graph G = {G(1), . . . , G(T )} with node attributes
X = {X(1), . . . ,X(T )}, dynamic link prediction problems are defined as follows: 1) dynamic link
detection, i.e. detect unobserved edges in G(T ); 2) dynamic link prediction, i.e. predict edges in
G(T+1); 3) dynamic new link prediction, i.e. predict edges in G(T+1) that are not in G(T ).

Experimental setups. For performance comparison, we evaluate different methods based on their
ability to correctly classify true and false edges. For dynamic link detection problem, we randomly
remove 5% and 10% of all edges at each time for validation and test sets, respectively. We also
randomly select the equal number of non-links as validation and test sets to compute average precision
(AP) and area under the ROC curve (AUC) scores. For dynamic (new) link prediction, all (new)
edges are set to be true edges and the same number of non-links are randomly selected to compute AP
and AUC scores. In all of our experiments, we test the model on the last three snapshots of dynamic
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Table 2: AUC and AP scores of inductive dynamic link detection on dynamic graphs.

Metrics Methods Enron COLAB Facebook Social Evo. HEP-TH Cora
VGAE 88.26 ± 1.33 70.49 ± 6.46 80.37 ± 0.12 79.85 ± 0.85 79.31 ± 1.97 87.60 ± 0.54
DynAE 84.06 ± 3.30 66.83 ± 2.62 60.71 ± 1.05 71.41 ± 0.66 63.94 ± 0.18 53.71 ± 0.48
DynRNN 77.74 ± 5.31 68.01 ± 5.50 69.77 ± 2.01 74.13 ± 1.74 72.39 ± 0.63 76.09 ± 0.97

AUC DynAERNN 91.71 ± 0.94 77.38 ± 3.84 81.71 ± 1.51 78.67 ± 1.07 82.01 ± 0.49 74.35 ± 0.85
GRNN 91.09 ± 0.67 86.40 ± 1.48 85.60 ± 0.59 78.27 ± 0.47 89.00 ± 0.46 91.35 ± 0.21
VGRNN 94.41 ± 0.73 88.67 ± 1.57 88.00 ± 0.57 82.69 ± 0.55 91.12 ± 0.71 92.08 ± 0.35
SI-VGRNN 95.03 ± 1.07 89.15± 1.31 88.12 ± 0.83 83.36 ± 0.53 91.05 ± 0.92 94.07 ± 0.44
VGAE 89.95 ± 1.45 73.08 ± 5.70 79.80 ± 0.22 79.41 ± 1.12 81.05 ± 1.53 89.61 ± 0.87
DynAE 86.30 ± 2.43 67.92 ± 2.43 60.83 ± 0.94 70.18 ± 1.98 63.87 ± 0.21 53.84 ± 0.51
DynRNN 81.85 ± 4.44 73.12 ± 3.15 70.63 ± 1.75 72.15 ± 2.30 74.12 ± 0.75 76.54 ± 0.66

AP DynAERNN 93.16 ± 0.88 83.02 ± 2.59 83.36 ± 1.83 77.41 ± 1.47 85.57 ± 0.93 79.34 ± 0.77
GRNN 93.47 ± 0.35 88.21 ± 1.35 84.77 ± 0.62 76.93± 0.35 89.50 ± 0.42 91.37 ± 0.27
VGRNN 95.17 ± 0.41 89.74 ± 1.31 87.32 ± 0.60 81.41 ± 0.53 91.35 ± 0.77 92.92 ± 0.28
SI-VGRNN 96.31 ± 0.72 89.90 ± 1.06 87.69 ± 0.92 83.20± 0.57 91.42 ± 0.86 94.44 ± 0.52

graphs while learning the parameters of the models based on the rest of the snapshots except for
HEP-TH where we test the model on the last 10 snapshots. For the datasets without node attributes,
we consider the Nt-dimensional identity matrix as node attributes at time t. Numbers show mean
results and standard error for 10 runs on random datasets splits with random initializations.

For all datasets, we set up our VGRNN model to have a single recurrent hidden layer with 32
GRU units. All ϕ’s in equations (3), (4), and (6) are modeled by a 32-dimensional fully-connected
layer. We use two 32-dimensional fully-connected layers for ϕprior in (2) and 2-layer GCN with
sizes equal to [32, 16] to model µ(t)

enc and σ(t)
enc in (6). For SI-VGRNN, a stochastic GCN layer

with size 32 and an additional GCN layer of size 16 are used to model the µ. The dimension of
injected standard Gaussian noise ε is 16. The covariance matrix Σ is deterministic and is inferred
through two layers of GCNs with sizes equal to [32, 16]. For fair comparison, the number of
parameters are the same for the competing methods. In all experiments, we train the models
for 1500 epochs with the learning rate 0.01. We use the validation set for the early stopping.
The supplement contains additional implementation details with hyperparmaeter selection. We
implemented (SI-)VGRNN in PyTorch [18] and the implementation of our proposed models is
accessible at https://github.com/VGraphRNN/VGRNN.

4.1 Results and discussion

Dynamic link detection. Table 2 summarizes the results for inductive link detection in different
datasets. Our proposed methods, VGRNN and SI-VGRNN, outperform competing methods across all
datasets by large margins. Improvement made by (SI-)VGRNN compared to GRNN and DynAERNN
supports our claim that latent random variables carry more information than deterministic hidden
states specially for dynamic graphs with complex temporal changes. Comparing the (SI-)VGRNN
with VGAE, which is a static graph embedding method, shows that the improvement of the proposed
methods is not only because of introducing stochastic latent variables, but also successful modelling
of temporal dependencies. We note that methods that take node attributes as input, i.e VGAE, GRNN
and (SI-)VGRNN, outperform other competing methods by a larger margin in Cora dataset which
includes node attributes.

Comparing SI-VGRNN with VGRNN shows that the Gaussian latent distribution may not always
be the best choice for latent node representations. SI-VGRNN with flexible variational inference
can learn more complex latent structures. The results for the Cora dataset, which also includes
attributes, clearly magnify the benefits of flexible posterior as SI-VGRNN improves the accuracy
by 2% compared to VGRNN. We also note that the improvement made by SI-VGRNN compared
to VGRNN is marginal in Facebook dataset. The reason could be that Gaussian latent variables
already represent the graph well. Therefore, more flexible posteriors do not enhance the performance
significantly.

Dynamic (new) link prediction. Tables 3 and 4 show the results for link prediction and new link
prediction, respectively. Since GRNN is trained as an autoencoder, it cannot predict edges in the
next snapshot. However, in (SI-)VGRNN, the prior construction based on previous time steps allows
us to predict links in the future. Note that none of the methods can predict new nodes, therefore,
HEP-TH, Cora and Citeseer datasets are not evaluated for these tasks. VGRNN and SI-VGRNN
outperform the competing methods significantly in both tasks for all of the datasets which proves
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Table 3: AUC and AP scores of dynamic link prediction on real-world dynamic graphs.

Metrics Methods Enron COLAB Facebook Social Evo.
DynAE 74.22 ± 0.74 63.14 ± 1.30 56.06 ± 0.29 65.50 ± 1.66
DynRNN 86.41 ± 1.36 75.7 ± 1.09 73.18 ± 0.60 71.37 ± 0.72

AUC DynAERNN 87.43 ± 1.19 76.06 ± 1.08 76.02 ± 0.88 73.47 ± 0.49
VGRNN 93.10 ± 0.57 85.95 ± 0.49 89.47 ± 0.37 77.54 ± 1.04
SI-VGRNN 93.93 ± 1.03 85.45 ± 0.91 90.94 ± 0.37 77.84 ± 0.79
DynAE 76.00 ± 0.77 64.02 ± 1.08 56.04 ± 0.37 63.66 ± 2.27
DynRNN 85.61 ± 1.46 78.95 ± 1.55 75.88 ± 0.42 69.02 ± 1.71

AP DynAERNN 89.37 ± 1.17 81.84 ± 0.89 78.55 ± 0.73 71.79 ± 0.81
VGRNN 93.29 ± 0.69 87.77 ± 0.79 89.04 ± 0.33 77.03 ± 0.83
SI-VGRNN 94.44 ± 0.85 88.36 ± 0.73 90.19 ± 0.27 77.40 ± 0.43

Table 4: AUC and AP scores of dynamic new link prediction on real-world dynamic graphs.

Metrics Methods Enron COLAB Facebook Social Evo.
DynAE 66.10 ± 0.71 58.14 ± 1.16 54.62 ± 0.22 55.25 ± 1.34
DynRNN 83.20 ± 1.01 71.71±0.73 73.32 ± 0.60 65.69 ± 3.11

AUC DynAERNN 83.77 ± 1.65 71.99 ± 1.04 76.35 ± 0.50 66.61 ± 2.18
VGRNN 88.43 ± 0.75 77.09 ± 0.23 87.20 ± 0.43 75.00 ± 0.97
SI-VGRNN 88.60 ± 0.95 77.95 ± 0.41 87.74 ± 0.53 76.45 ± 1.19
DynAE 66.50 ± 1.12 58.82 ± 1.06 54.57 ± 0.20 54.05 ± 1.63
DynRNN 80.96 ± 1.37 75.34 ± 0.67 75.52 ± 0.50 63.47 ± 2.70

AP DynAERNN 85.16 ± 1.04 77.68 ± 0.66 78.70 ± 0.44 65.03 ± 1.74
VGRNN 87.57 ± 0.57 79.63 ± 0.94 86.30 ± 0.29 73.48 ± 1.11
SI-VGRNN 87.88 ± 0.84 81.26 ± 0.38 86.72 ± 0.54 73.85 ± 1.33
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Figure 2: Evolution of graph statistics through time.

that our proposed models have better generalization, which is the result of including random latent
variables in our model. We note that our proposed methods improve new link prediction more
substantially which shows that they can capture temporal trends better than the competing methods.
Comparing VGRNN with SI-VGRNN shows that the prediction results are almost the same for all
datasets. The reason is that although the posterior is more flexible in SI-VGRNN, the prior on which
our predictions are based, is still Gaussian, hence the improvement is marginal. A possible avenue
for further improvements is constructing more flexible priors such as semi-implicit priors proposed
by Molchanov et al. [17], which we leave for future studies.

To find out when VGRNN and SI-VGRNN show more improvements compared to the baselines,
we take a closer look at three of the datasets. Figure 2 shows the temporal evolution of density and
clustering coefficients of COLAB, Enron, and Facebook datasets. Enron shows the highest density
and clustering coefficients, indicating that it contains dense clusters who are densely connected with
each other. COLAB have low density and high clustering coefficients across time, which means that
although it is very sparse but edges are mostly within the clusters. Facebook, which has both low
density and clustering coefficients, is very sparse with almost no clusters. Looking back at (new)
link prediction results, we see that the improvement margin of (SI-)VGRNN compared to competing
methods is more substantial for Facebook. Moreover, the improvement margin diminishes when
the graph has more clusters and is more dense. Predicting the evolution very sparse graphs with
no clusters is indeed a very difficult task (arguably more difficult than dense graphs), in which our
proposed (SI-)VGRNN is very successful. The stochastic latent variables in our models can capture
the temporal trend while other methods tend to overfit very few observed links.
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Figure 3: Evolution of simulated graph topology through time.

Figure 4: Latent representations of the simulated graph in different time steps in 2-d space using VGRNN.

4.2 Interpretable latent representations

To show that VGRNN learns more interpretable latent representations, we simulated a dynamic graph
with three communities in which a node (red colored node) transfers from one community into another
in two time steps (Figure 3). We embedded the node into 2-d latent space using VGRNN (Figure 4)
and DynAERNN (the best performed baseline; Figure S1 in the supplementary material). While the
advantages of modeling uncertainty for latent representations and its relation to node labels (classes)
for static graphs have been discussed in Bojchevski and Günnemann [2], we argue that the uncertainty
is also directly related to topological evolution in dynamic graphs.

More specifically, the variance of the latent variables for the node of interest increases in time (left to
right) marked with the red contour. In time steps 2 and 3 (where the node is moving in the graph),
the information from previous and current time steps contradicts each other; hence we expect the
representation uncertainty to increase. We also plotted the variance of a node whose community
doesn’t change in time (marked with the green contour). As we expected, the variance of this
node does not increase over time. We argue that the uncertainty helps to better encode non-smooth
evolution, in particular abrupt changes, in dynamic graphs. Moreover, at time step 2, the moving node
have multiple edges with nodes in two communities. Considering the inner-product decoder, which is
based on the angle between the latent representations, the moving node can be connected to both of
the communities which is consistent with the graph topology. We note that DynAERNN (Figure S1)
fails to produce such an interpretable latent representation. We can see that VGRNN can separate the
communities in the latent space more distinctively than what DynAERNN does.

5 Conclusion

We have proposed VGRNN and SI-VGRNN, the first node embedding methods for dynamic graphs
that embed each node to a random vector in the latent space. We argue that adding high level latent
variables to graph recurrent neural networks not only increases its expressiveness to better model
the complex dynamics of graphs, but also generates interpretable random latent representation for
nodes. SI-VGRNN is also developed by combining VGRNN and semi-implicit variational inference
for flexible variational inference. We have tested our proposed methods on dynamic link prediction
tasks and they outperform competing methods substantially, specially for very sparse graphs.
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