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ABSTRACT
Stochastic recurrent neural networks with latent random vari-
ables of complex dependency structures have shown to be
more successful in modeling sequential data than determin-
istic deep models. However, the majority of existing methods
have limited expressive power due to the Gaussian assump-
tion of latent variables. In this paper, we advocate learning
implicit latent representations using semi-implicit variational
inference to further increase model flexibility. Semi-implicit
stochastic recurrent neural network (SIS-RNN) is developed
to enrich inferred model posteriors that may have no analytic
density functions, as long as independent random samples can
be generated via reparameterization. Extensive experiments
in different tasks on real-world datasets show that SIS-RNN
outperforms the existing methods.

Index Terms— Semi-implicit variational inference, Vari-
ational auto-encoder (VAE), Recurrent neural network (RNN),
Natural language processing (NLP).

1. INTRODUCTION
Deep auto-regressive models, such as recurrent neural net-
works (RNNs), are widely used for modeling sequential
data due to their effective representation of long-term de-
pendencies. It has been shown that inducing uncertainty in
hidden states of deep auto-regressive models could drasti-
cally improve their performance in many applications such
as speech modeling, text generation, sequential image mod-
eling and dynamic graph representation learning [1, 2, 3,
4, 5, 6]. These methods integrate the variational auto-
encoder (VAE) framework with deep auto-regressive mod-
els to infer stochastic latent variables, which can capture
higher-level semantic abstraction (e.g. objects, speakers, or
graph modules/communities) from the observed variables in
a sequence (e.g. pixels, sound-waves, or partially observed
dynamic graphs).

Existing stochastic recurrent models, while having differ-
ent encoder and decoder structures, have restricted expressive
power due to the commonly adopted Gaussian assumption on
prior and posterior distributions of latent variables. The Gaus-
sian assumption has a well-known issue in underestimating
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the variance of the posterior [7], which can be further ampli-
fied by mean field variational inference (MFVI). This issue is
often attributed to two key factors: 1) the mismatch between
the restricted representation power of the variational familyQ
and the complexity of the posterior to be approximated by Q;
2) the use of KL divergence, which is an asymmetric measure
for the distance between Q and the posterior [8, 9].

In this paper, we break the Gaussian assumption and pro-
pose a semi-implicit stochastic recurrent neural network (SIS-
RNN) that is capable of inferring implicit posteriors for se-
quential data while maintaining simple optimization. Inspired
by semi-implicit variational inference (SIVI) [8], we impose
a semi-implicit hierarchical construction on a backbone RNN
to represent the posterior distribution of stochastic recurrent
layers. SIVI enables a flexible (implicit) mixing distribution
for variational inference of our proposed SIS-RNN. As a re-
sult, even if the marginal of the hierarchy is not tractable,
its density can be evaluated by Monte Carlo estimation. Our
proposed framework is capable of modeling skewness, kurto-
sis, multimodality, and other characteristics that are exhibited
by the posterior of latent variables but fail to be captured by
the mean-field Gaussian variational family. Our experiments
demonstrate the superior performance of our proposed model
in sequential image modeling and language modeling on mul-
tiple real-world datasets.

2. PRELIMINARIES
2.1. Semi-implicit variational inference (SIVI)
SIVI has been proposed by [8] as a method for inferring im-
plicit posteriors while maintaining simple optimization. SIVI
assumes that the parameters of the posterior, ψ, are drawn
from an implicit distribution instead of taking deterministic
values. This hierarchical construction enables flexible mix-
ture modeling and allows to have richer variational posteri-
ors. More specifically, let Z ∼ q(Z |ψ) and ψ ∼ qφ(ψ),
with φ denoting the distribution parameters to be inferred,
and q(Z |ψ) be the posterior distribution. Marginalizing ψ
out leads to the random variables Z drawn from a distribution
family H indexed by variational parameters φ, expressed as

H =

{
hφ(Z) : hφ(Z) =

∫
ψ

q(Z |ψ)qφ(ψ) dψ
}
. (1)



The essence of the semi-implicit formulation is that while
the conditional posterior q(Z |ψ) is explicit and analytic, the
marginal distribution, hφ(Z) is often implicit. Note that, if
qφ equals a delta function, then hφ is an explicit distribu-
tion. Unlike regular variational inference that assumes inde-
pendent latent dimensions, SIVI does not impose such a con-
straint. This enables the resulting variational distributions to
model very complex multivariate distributions such as multi-
modal or skewed distributions, which can not be captured by
vanilla variational inference due to its often restricted expo-
nential family assumption over both prior and posterior.

2.2. Variational recurrent neural network (VRNN)
VRNN [10] combines VAE with RNN to increase the expres-
sive power of RNN and better model variability observed in
highly structured sequential data. In VRNN, in addition to
hidden states of RNN, a latent random variable is used to sum-
marize past information. More specifically, given observa-
tions x≤t and the stochastic variables z≤t, model likelihood
p(xt|z≤t,x<t), and prior p(zt|z<t,x<t), we approximate
the posterior p(zt|x≤t, z<t) with a variational distribution
q(zt|ψt) that is required to be explicit. We learn the varia-
tional parameters by minimizing KL(q(zt|ψt)||p(zt|x≤t, z<t)),
the KL divergence of p(zt|x≤t, z<t) and q(zt|ψt). Knowing
that

logp(x≤T ) = ELBO+

T∑
t=1

KL(q(zt|ψt)||p(zt|x≤t, z<t)),

with ELBO =

−Eq(z≤T |x≤T )

[
T∑
t=1

(logq(zt|ψt)− logp(x≤t, z≤t))

]
, (2)

minimizing KL(q(zt|ψt) || p(zt|x≤t, z<t)) is hence equiva-
lent to maximizing the ELBO [10]. Note that past informa-
tion, i.e. x≤t, is transformed through RNN hidden states ht
as detailed below.

3. SIS-RNN
We introduce our SIS-RNN that imposes a distribution over
parameters of posterior in VRNN, i.e. ψt ∼ q(ψt), instead
of simply taking deterministic parameters.

Model construction. Assuming ψt ∼ qφ(ψt|x≤t, z<t),
where φ denotes the parameters of the distribution to be in-
ferred, the semi-implicit variational distribution for zt can be
defined in a hierarchical manner as

zt ∼ q(zt|ψt), ψt ∼ qφ(ψt|x≤t, z<t). (3)

We impose an auto-regressive model to capture long-term
dependency in the mixing distribution by exploiting an RNN
architecture, that runs through the sequence as follows:

ht = fθ(xt, zt,ht−1), (4)

where f is a deterministic non-linear transition function, and
θ is the parameter set of f to infer. By coupling the obser-
vations and latent variables using the recurrence equation (4),
SIS-RNN in (3) can be equivalently expressed as

zt ∼ q(zt|ψt), ψt ∼ qφ(ψt|xt,ht−1). (5)

Marginalizing ψt out leads to the random variables zt
drawn from the distribution family G indexed by variational
parameters φ, expressed as

G =

{
gφ(zt|xt,ht−1) =

∫
ψt

q(zt|ψt)qφ(ψt|xt,ht−1)dψt

}
(6)

While the variational distribution q(zt|ψt) is required to
be explicit, there is no such a constraint on the mixing
distribution qφ(ψt|xt,ht−1) and it is only required to be
reparameterizable. In addition, q(zt|ψt) can be reparam-
eterizable, with zt ∼ q(zt|ψt) being generated by trans-
forming random noise ε via f(ε,ψt) or allowing the ELBO
in (2) to be analytic. More specifically, SIS-RNN draws
samples from qφ(ψt|xt,ht−1) by transforming random
noise εt via a deep neural network. Specifically, assum-
ing that conditional posterior is Gaussian, then, q(zt|ψt) ∼
N
(
µ

(t)
encoder, diag((σ(t)

encoder)
2)
)

, with
{
µ

(t)
encoder,σ

(t)
encoder

}
=

ϕencoder(zt,ht−1, εt) where ϕencoder is a neural network. This
generally leads to an implicit distribution for qφ(ψt|xt,ht−1)
due to a non-invertible transform ϕencoder. Therefore, the
marginal variational distribution gφ(zt|xt,ht−1) ∈ G is of-
ten implicit, unless qφ(ψt|xt,ht−1) is conjugate to q(zt|ψt).

Note that if qφ(ψt|xt,ht−1) degenerates to the delta
function δψ0

t
(ψt|xt,ht−1), the semi-implicit variational fam-

ily G reduces to the original Q = q(zt|ψ0
t ) family, where

Q ⊆ G, as discussed in [10]. Unlike MFVI that assumes
independent latent variables z(l)t , this expansion significantly
helps restore the dependencies between them if ψ(l)

t are not
imposed to be independent of each other. Under this construc-
tion, the temporal variational distribution can be factorized
as

q(z≤T |x≤T ) =
T∏
t=1

gφ(zt|x≤t, z<t). (7)

Instead of imposing a standard multivariate Gaussian dis-
tribution with deterministic parameters, VAE in our SIS-RNN
learns the prior distribution parameters based on the hidden
states in previous time steps. In particular, we can write the
construction of the prior distribution adopted as follows,

zt ∼ N
(
µ

(t)
prior, diag((σ(t)

prior)
2)
)
, (8)

where
{
µ

(t)
prior,σ

(t)
prior

}
= ϕprior(ht−1) denote the parameters

of the conditional prior distribution. Therefore, the generative



model can be factorized as

p(x≤T , z≤T ) =

T∏
t=1

p(xt|z≤t,x<t)p(zt|z<t,x<t)

=

T∏
t=1

p(xt|zt,ht−1)p(zt|ht−1),

(9)

where the parameters of the generating distribution p(xt|zt,
ht−1) can be learned using neural networks ϕdecoder.

Learning. Since the parameters of the posterior are random
variables, the ELBO goes beyond the simple VRNN and us-
ing equations (7) and (9), ELBO can be derived as follows:

L =

T∑
t=1

{
Eψt∼qφ(ψt|xt,ht−1)Ezt∼q(zt|ψt)

logp(xt|zt,ht−1)

−KL
(
Eψt∼qφ(ψt|xt,ht−1)q(zt|ψt) || p(zt|ht−1)

)}
.

(10)
Direct optimization of the ELBO is not tractable [8, 9, 2].
Hence to infer variational parameters of SI-VGRNN, we de-
rive a lower bound for the ELBO as follows:

L = Ez∼q(z≤T |x≤T ) [logp(x≤T , z≤T )− logq(z≤T |x≤T )]

=

T∑
t=1

Ezt∼gφ(zt|xt,ht−1)log
p(xt|zt,ht−1)p(zt|ht−1)

gφ(zt|xt,ht−1)

= −
T∑
t=1

{
KL(Eψt∼qφ(ψt|xt,ht−1)q(zt|ψt) || p(zt|ht−1))

+ Eψt∼qφ(ψt|xt,ht−1)Ezt∼q(zt|ψt)
logp(xt|zt,ht−1)

}
≥ −

T∑
t=1

{
Eψt∼qφ(ψt|xt,ht−1)KL(q(zt|ψt) || p(zt|ht−1))

+ Eψt∼qφ(ψt|xt,ht−1)Ezt∼q(zt|ψt)
logp(xt|zt,ht−1)

}
=

T∑
t=1

Eψt∼qφ(ψt|xt,ht−1)Ezt∼q(zt|ψt)

log

(
p(xt|zt,ht−1)p(zt|ht−1)

q(zt|ψt)

)
= L.

(11)
Note that we used the following inequality from [8] to derive
L, Eψt

KL(q(zt|ψt)||p(zt) ≥ KL(Eψt
q(zt|ψt)||p(zt)) .

While Monte Carlo estimation ofL only requires qφ(zt|ψt)
to have an analytic density function and qφ(ψt|xt,ht−1) to
be convenient to sample from, gφ(zt|xt,ht−1) is often in-
tractable, and so the Monte Carlo estimation of the ELBO
L is prohibited. Therefore, SIS-RNN evaluates the lower
bound separately from the distribution sampling. While
the combination of an explicit qφ(zt|ψt) with an implicit
qφ(ψt|xt,ht−1) is as powerful as needed, it is computation-
ally tractable.

As discussed in [8], without early stopping optimization,
qφ(ψt|xt,ht−1) can converge to a point mass density, mak-
ing SIS-RNN degenerated to vanilla VRNN. To avoid this
problem, we impose a regularization term to the lower bound
LK = L+BK as inspired by SIVI [8]:

BK =

T∑
t=1

E
ψt,ψ

(1)
t ,...,ψ

(K)
t ∼qφ(ψt|xt,ht−1)

KL(q(zt|ψt) || g̃K(zt|xt,ht−1)),

where g̃K(zt|xt,ht−1)) =

qφ(ψt|xt,ht−1) +
∑K
k=1 qφ(ψ

(k)
t |xt,ht−1)

K + 1
. (12)

This leads to an asymptotically exact ELBO that satisfies
L0 = L and limK→∞ LK = L.

4. EXPERIMENTS
Sequential MNIST. We first evaluate the performance of
SIS-RNN in the task of sequentially generating pixels in
MNIST digits, which is a common benchmarking test in
evaluating sequence modeling methods. We consider the bi-
narized MNIST dataset as in [11]. Following the previous
works [1], we used 60,000 samples for training and 10,000
for testing. A Gated Recurrent Unit (GRU) with one layer
of 64 hidden units was the backbone RNN in SIS-RNN.
Two 64-dimensional fully-connected layers were adopted to
model ϕprior in (8). We used a neural network with three 128-
dimensional fully-connected layers as ϕencoder while injecting
[150, 100, 50] dimensional Bernoulli noise. The model was
trained for 2000 epochs using the Adam optimizer with a
0.001 learning rate at the mini-batch size of 128. K in (12)
gradually increased from 1 to 100 during the first 500 epochs
and remained constant after that. We used cyclic anneal-
ing [12] as the KL annealing in ELBO to gradually impose
the prior regularization term and avoid posterior collapse.
The performance of SIS-RNN and the comparison with other
methods are provided in Table 1. We report exact negative
log-likelihood (NLL), approximate NLL (with≈ sign), or the
variational lower bound (with ≤ sign) based on the compet-
ing methods. While 64 hidden units were chosen to have the
same number of parameters as competing methods, we show
increasing the number of hidden units to 128 significantly
improves the performance of SIS-RNN without overfitting.

IAM-OnDB. This human handwriting dataset contains 13,040
handwriting lines written by 500 writers [23]. The writing
trajectories are represented as a sequence of (x, y) coordi-
nates together with binary indicators of pen-up/pen-down.
We followed [10, 24] to preprocess and split the dataset. The
experimental setup for IAM-OnDB is the same as that of
the sequential MNIST experiment except that we used 256
hidden units for GRU to have the same number of parameters



Table 1. Comparison of the negative log-likelihood (NLL)
between various algorithms for sequential MNIST.

Model NLL
DBN 2hl [13] ≈84.55
NADE [14] 88.33
EoNADE-5 2hl [15] 84.68
DLGM 8 [16] ≈85.51
DARN 1hl [17] ≈84.13
DRAW [17] ≤80.97
PixelVAE [18] ≈79.02
P-Forcing(3-layers) [19] 79.58
PixelRNN(1-layer) [20] 80.75
PixelRNN(7-layers) [20] 79.20
MatNets [21] 78.50
Z-Forcing(1-layer) [1] ≤ 80.60
Z-Forcing(1-layer) + aux [1] ≤ 80.09
TwinNet(3-layers) [22] ≤ 79.12
VRNN(1-layer) ≤ 74.15
SIS-RNN(1-layer) 64 71.90
SIS-RNN(1-layer) 128 70.57

Table 2. Comparison of the average NLL between various
algorithms for IAM-OnDB.

Model Average NLL
RNN [10] -1358
VRNN [10] ≤-1384
WAVENET [24] -1021
SWAVENET [24] ≤-1301
STCN [24] ≤-1338
STCN-DENSE [24] ≤-1796
SIS-RNN(1-LAYER) -1973

with competing methods. We report the average negative
log-likelihood of test examples in Table 2. For SIS-RNN,
WaveNet, and RNN, we report the exact log-likelihood, while
in the other cases, we report the variational lower bound (with
≤ sign). Our results show that SIS-RNN achieves higher
log-likelihood, which supports our expectation that implicit
latent random variables are helpful when modeling complex
sequences.

Language modeling. Due to their powerful model capacity
by distribution-based latent representations, VAEs have be-
come the generative models of choice for dealing with many
natural language processing (NLP) tasks including language
modeling [25]. This flexible representation allows capturing
holistic properties of sentences, such as text style, topic, and
high-level linguistic and semantic features. Generated sam-
ples from the prior latent distribution can further produce di-
verse and well-formed sentences through simple deterministic
decoding.

Despite its popularity, 1) the adopted auto-regressive de-
coder, which is often implemented with an RNN, tends to ig-
nore the latent variables in decoding, yielding “posterior col-

Table 3. Comparison of language modeling on two datasets.

Dataset Model NLL PPL KL
VAE-LSTM [25] 337.3 68.31 0.0

YAHOO VAE-TRANSFORMER [28] 328.6 61.6 0.7
SA-VAE [27] 327.2 60.1 5.2

SIS-RNN 326.7 59.8 4.2
VAE-LSTM [25] 102.1 105.2 0.0

VAE-TRANSFORMER [28] 101.5 102.4 0.2
PTB CYCLIC-VAE [12] 103.1 110.5 3.5

SA-VAE [27] 102.6 107.1 1.2
SIS-RNN 101.2 101.8 1.6

lapse” [25, 12]; 2) the Gaussian assumption imposed on the
variational distribution restricts its variational inference ca-
pacity. While there exists a variety of methods to address the
first problem by either changing the decoder [26] or applying
KL annealing [25, 12], only a few works addressed the latter
one including semi-amortized VAE (SA-VAE) [27].

It has been shown that having one latent variable for
each sentence is more effective than including one latent
variable for each word [12]. Therefore, for this experiment,
we customized our SIS-RNN to have only one stochastic la-
tent variable for each sequence of data, i.e. sentence. More
specifically, we only infer one variational latent variable from
the last hidden state of RNN. Moreover, we used a self-
attention transformer as the decoder, i.e. ϕdecoder, similar to
[28]. We used the same experimental setting as in the previ-
ous works [25, 26, 28]. The rest of the hyper-parameters of
our model are the same as those of our IAM-OnDB experi-
ment. We consider two public datasets, the Yahoo [26] and
Penn Treebank (PTB) [25]. While PTB is a relatively small
dataset with sentences of varying lengths, Yahoo contains
more samples with longer sentences. Table 3 shows the per-
plexity (PPL), sentence-level NLL and KL divergence of test
samples. Not only SIS-RNN outperforms other methods in
terms of NLL and PPL, but also checking KL values indicates
that SIS-RNN does not suffer from posterior collapse. ”how
to stay in hot water when i get dizzy?”, ”i just like this girl
and we have been friends for 4 yrs.”, and ”i hate it person-
ally.” are the generated examples from the model trained on
Yahoo. ”he probably showed it this month as a fundamental
policy which includes the best of <unk> and sales <EOS>”
and ”the market ’s bullish trend is underway <EOS>” are
two generated examples from the model trained on PTB.

5. CONCLUSION

We have proposed SIS-RNN, the first stochastic recurrent la-
tent variable model with more expressive variational poste-
riors. We argue that more flexible variational inference in
SIS-RNN is a key to better modeling of the dependency in
the sequential data. We have tested SIS-RNN on three differ-
ent tasks with SIS-RNN outperforming competing methods
substantially.
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