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Abstract

Semi-implicit graph variational auto-encoder (SIG-VAE) is proposed to expand
the flexibility of variational graph auto-encoders (VGAE) to model graph data.
SIG-VAE employs a hierarchical variational framework to enable neighboring node
sharing for better generative modeling of graph dependency structure, together
with a Bernoulli-Poisson link decoder. Not only does this hierarchical construction
provide a more flexible generative graph model to better capture real-world graph
properties, but also does SIG-VAE naturally lead to semi-implicit hierarchical
variational inference that allows faithful modeling of implicit posteriors of given
graph data, which may exhibit heavy tails, multiple modes, skewness, and rich
dependency structures. SIG-VAE integrates a carefully designed generative model,
well suited to model real-world sparse graphs, and a sophisticated variational
inference network, which propagates the graph structural information and distri-
bution uncertainty to capture complex posteriors. SIG-VAE clearly outperforms a
simple combination of VGAE with variational inference, including semi-implicit
variational inference (SIVI) or normalizing flow (NF), which does not propagate
uncertainty in its inference network, and provides more interpretable latent repre-
sentations than VGAE does. Extensive experiments with a variety of graph data
show that SIG-VAE significantly outperforms state-of-the-art methods on several
different graph analytic tasks.

1 Introduction

Analyzing graph data is an important machine learning task with a wide variety of applications.
Transportation networks, social networks, gene co-expression networks, and recommendation systems
are a few example datasets that can be modeled as graphs, where each node represents an agent (e.g.,
road intersection, person, and gene) and the edges manifest the interactions between the agents. The
main challenge for analyzing graph datasets for link prediction, clustering, or node classification,
is how to deploy graph structural information in the model. Graph representation learning aims to
summarize the graph structural information by a feature vector in a low-dimensional latent space,
which can be used in downstream analytic tasks.

While the vast majority of existing methods assume that each node is embedded to a deterministic
point in the latent space [5, 2, 25, 30, 14, 15, 10, 4], modeling uncertainty is of crucial importance in
many applications, including physics and biology. For example, when link prediction in Knowledge
Graphs is used for driving expensive pharmaceutical experiments, it would be beneficial to know
what is the confidence level of a model in its prediction. To address this, variational graph auto-
encoder (VGAE) [18] embeds each node to a random variable in the latent space. Despite its
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popularity, 1) the Gaussian assumption imposed on the variational distribution restricts its variational
inference flexibility when the true posterior distribution given a graph clearly violates the Gaussian
assumption; 2) the adopted inner-product decoder restricts its generative model flexibility. While
recent study tries to address the first problem by changing the prior distribution but does not show
much practical success [11], the latter one is not well-studied yet to the best of our knowledge.

Inspired by recently developed semi-implicit variational inference (SIVI) [39] and normalizing
flow (NF) [27, 17, 23], which offer the interesting combination of flexible posterior distribution and
effective optimization, we propose a hierarchical variational graph framework for node embedding of
graph structured data, notably increasing the expressiveness of the posterior distribution for each node
in the latent space. SIVI enriches mean-field variational inference with a flexible (implicit) mixing
distribution. NF transforms a simple Gaussian random variable through a sequence of invertible
differentiable functions with tractable Jacobians. While NF restricts the mixing distribution in the
hierarchy to have an explicit probability density function, SIVI does not impose such a constraint.
Both SIVI and NF can model complex posterior distributions, which will help when the underlying
true embedded node distribution exhibits heavy tails and/or multiple modes. We further argue that the
graph structure cannot be fully exploited by the posterior distribution from the trivial combination of
SIVI and/or NF with VGAE, if not integrating graph neighborhood information. On the other hand,
it does not address the flexibility of the generative model as stated as the second VGAE problem.

To address the aforementioned issues, instead of explicitly choosing the posterior distribution family
in previous works [18, 11], our hierarchical variational framework adopts a stochastic generative
node embedding model that can learn implicit posteriors while maintaining simple optimization.
Specifically, we innovate a semi-implicit hierarchical construction to model the posterior distribution
to best fit both the graph topology and node attributes given graphs. With SIVI, even if the posterior
is not tractable, its density can be evaluated with Monte Carlo estimation, enabling efficient model
inference on top of highly enhanced model flexibility/expressive power. Our semi-implicit graph
variational auto-encoder (SIG-VAE) can well model heavy tails, skewness, multimodality, and other
characteristics that are exhibited by the posterior but failed to be captured by existing VGAEs.
Furthermore, a Bernoulli-Poisson link function [41] is adopted in the decoder of SIG-VAE to increase
the flexibility of the generative model and better capture graph properties of real-world networks that
are often sparse. SIG-VAE facilitates end-to-end learning for various graph analytic tasks evaluated in
our experiments. For link prediction, SIG-VAE consistently outperforms state-of-the-art methods by
a large margin. It is also comparable with state-of-the-arts when modified to perform two additional
tasks, node classification and graph clustering, even though node classification is more suitable to be
solved by supervised learning methods. We further show that the new decoder is able to generate
sparse random graphs whose statistics closely resemble those of real-world graph data. These results
clearly demonstrate the great practical values of SIG-VAE. The implementation of our proposed
model is accessible at https://github.com/sigvae/SIGraphVAE.

2 Background

Variational graph auto-encoder (VGAE). Many node embedding methods derive deterministic
latent representations [14, 15, 10]. By expanding the variational auto-encoder (VAE) notion to graphs,
Kipf and Welling [18] propose to solve the following problem by embedding the nodes to Gaussian
random vectors in the latent space.

Problem 1. Given a graph G = (V, E) with the adjacency matrix A and M -dimensional node
attributes X ∈ RN×M , find the probability distribution of the latent representation of nodes Z ∈
RN×L , i.e., p(Z |X,A).

Finding the true posterior, p(Z |X,A), is often difficult and intractable. In Kipf and Welling [18], it
is approximated by a Gaussian distribution, q(Z |ψ) =

∏N
i=1 qi(zi |ψi) and qi(zi |ψi) = N (zi |ψi)

with ψi = {µi, diag(σ2
i )}. Here, µi and σi are l-dimensional mean and standard deviation vectors

corresponding to node i, respectively. The parameters of q(Z |ψ), i.e., ψ = {ψi}Ni=1, are modeled
and learned using two graph convolutional neural networks (GCNs) [19]. More precisely, µ =
GCNµ(X,A), log σ = GCNσ(X,A) and µ and σ are matrices of µi’s and σi’s, respectively. Given
Z, the decoder in VGAE is a simple inner-product decoder as p(Ai,j = 1 | zi, zj) = sigmoid(zi zTj ).
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The parameters of the model are found by optimizing the well known evidence lower
bound (ELBO) [16, 7, 8, 33]: L = Eq(Z |ψ)[p(A |Z)] − KL[q(Z |ψ) || p(Z)]. Note that q(Z |ψ)
here is equivalent to q(Z |X,A). Despite promising results shown by VGAE, a well-known issue in
variational inference is underestimating the variance of the posterior. The reason behind this is the
mismatch between the representation power of the variational family to which q is restricted and the
complexity of the true posterior, in addition to the use of KL divergence, which is asymmetric, to
measure how different q is from the true posterior.

Semi-implicit variational inference (SIVI). To well characterize the posterior while maintaining
simple optimization, semi-implicit variational inference (SIVI) has been proposed by Yin and Zhou
[39], which is also related to the hierarchical variational inference [26] and auxiliary deep generative
models [21]; see Yin and Zhou [39] for more details about their connections and differences. It
has been shown that SIVI can capture complex posterior distributions like multimodal or skewed
distributions, which can not be captured by a vanilla VI due to its restricted exponential family
assumption over both the prior and posterior in the latent space. SIVI assumes that ψ, the parameters
of the posterior, are drawn from an implicit distribution rather than being analytic. This hierarchical
construction enables flexible mixture modeling and allows to have more complex posteriors while
maintaining simple optimization for model inference. More specifically, Z ∼ q(Z |ψ) and ψ ∼ qφ(ψ)
with φ denoting the distribution parameters to be inferred. Marginalizing ψ out leads to the random
variables Z drawn from a distribution family H indexed by variational parameters φ, expressed as

H =

{
hφ(Z) : hφ(Z) =

∫
ψ

q(Z |ψ)qφ(ψ) dψ
}
. (1)

The importance of semi-implicit formulation is that while the original posterior q(Z |ψ) is explicit
and analytic, the marginal distribution, hφ(Z) is often implicit. Note that, if qφ equals a delta function,
then hφ is an explicit distribution. Unlike regular variational inference that assumes independent
latent dimensions, semi-implicit does not impose such a constraint. This enables the semi-implicit
variational distributions to model very complex multivariate distributions.

Since the marginal probability density function hφ(Z) is often intractable, SIVI derives a lower
bound for ELBO, as follows, to optimize the variational parameters.

L = EZ∼hφ(Z)

[
log

p(Y,Z)
hφ(Z)

]
= −KL(Eψ∼qφ(ψ)[q(Z |ψ)] || p(Z |Y)) + log p(Y)

≥ −Eψ∼qφ(ψ)KL(q(Z |ψ) || p(Z |Y)) + log p(Y)

= Eψ∼qφ(ψ)

[
EZ∼q(Z |ψ)

[
log

(
p(Y,Z)
q(Z |ψ)

)]]
= L(q(Z |ψ), qφ(ψ)),

(2)

where Y is the observations. The inequality EψKL(q(Z |ψ)||p(Z)) ≥ KL(Eψ[q(Z|ψ)]||p(Z)) has
been used to derive L. Optimizing this lower bound, however, could drive the mixing distribution
qφ(ψ) towards a point mass density. To address the degeneracy issue, SIVI adds a nonnegative
regularization term, leading to a surrogate ELBO that is asymptotically exact [39]. We will further
discuss this in the supplementary material.

Normalizing flow (NF). NF [23] also enriches the posterior distribution families. Compared to
SIVI, NF imposes explicit density functions for the mixing distributions in the hierarchy while SIVI
only requires qφ to be reparameterizable. This makes SIVI more flexible, especially when using it
for graph analytics as explained in the next section, since the SIVI posterior can be generated by
transforming random noise using any flexible function, for example a neural network.

3 Baselines: Variational Inference with VGAE

Before presenting our semi-implicit graph variational auto-encoder (SIG-VAE), we first introduce
two baseline methods that directly combines SIVI and NF with VGAE.

SIVI-VGAE. To address Problem 1 while well characterizing the posterior with modeling flexibility
in the VGAE framework, the naive solution is to take the semi-implicit variational distribution in
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SIVI for modeling latent variables in VGAE, following the hierarchical formulation

Z ∼ q(Z |ψ), ψ ∼ qφ(ψ |X,A), (3)

by introducing the implicit prior distribution parametrized by ψ, which can be sampled from the
reparametrizable qφ(ψ |X,A). Such a hierarchical semi-implicit construct not only leads to flexible
mixture modeling of the posterior but also enables efficient model inference, for example, with φ
being parameterized by deep neural networks. In this framework, the features from multiple layers
of GNNs can be aggregated and then transformed via multiple fully connected layers after being
concatenated by random noise to derive the posterior distribution for each node separately. More
specifically, SIVI-VGAE injects random noise at C different stochastic fully connected layers for
each node independently:

hu = GNNu(A,CONCAT(X,hu−1)), for u = 1, . . . , L, h0 = 0

`
(i)
t = T t(`

(i)
t−1, εt,h

(i)
L ), where εt ∼ qt(ε) for t = 1, . . . , C, `

(i)
0 = 0

µi(A,X) = gµ(`
(i)
C ,h(i)

L ), Σi(A,X) = gΣ(`
(i)
C ,h(i)

L ),

q(Z |A,X,µ,Σ) =
∏N
i=1q(zi |A,X,µi,Σi), q(zi |A,X,µi,Σi) = N (µi(A,X),Σi(A,X)),

where T t, gµ, and gσ are all deterministic neural networks, i is the node index, L is the number
of GNN layers, and εt is random noise drawn from the distribution qt. Note that in the equations
above, GNN is any type of existing graph neural networks, such as graph convolutional neural
network (GCN) [19], GCN with Chebyshev filters [13], GraphSAGE [15], jumping knowledge (JK)
networks [36], and graph isomorphism network (GIN) [37]. Given the GNNL output hL, µi(A,X)
and Σi(A,X) are now random variables rather than following vanilla VAE to assume deterministic
values. In this way, however, the constructed implicit distributions may not capture the dependency
between neighboring nodes completely. Note that we consider SIVI-VGAE as a naive version of
our proposed SIG-VAE (and call it as Naive SIG-VAE in the rest of the paper), which is specifically
designed with neighborhood sharing to capture complex dependency structures in networks, as
detailed in the next section. Please also note that the first layer of SIVI can be integrated with NF
rather than simple Gaussian. We leave that for future study.

NF-VGAE. It is also possible to enable VGAE model flexibility by other existing variational inference
methods, for example using NF. However, NF requires deterministic transform functions whose
Jacobians shall be easy to compute, which limits the flexibility when considering complex dependency
structures in graph analytic tasks. We indeed have constructed a non-Gaussian VGAE, i.e. NF-based
variational graph auto-encoder (NF-VGAE) as follows

hu = GNNu(A,CONCAT(X,hu−1)), for u = 1, . . . , L, h0 = 0 (4)
µ(A,X) = GNNµ(A,CONCAT(X,hL)), Σ(A,X) = GNNΣ(A,CONCAT(X,hL)),

q0(Z(0) |A,X) =
∏N
i=1q0(z

(0)
i |A,X), with q0(z

(0)
i |A,X) = N (µi, diag(σ2

i )),

qK(Z(K) |A,X) =
∏N
i=1q0(z

(K)
i |A,X), ln(qK(z(K)

i | −)) = ln(q0(z
(0)
i ))−

∑
k

ln|det
∂fk

∂z(k)
i

|,

where the posterior distribution qK(Z(K)|A,X) is obtained by successively transforming a Gaussian
random variable Z(0) with distribution q0 through a chain of K invertible differentiable transforma-
tions fk : Rd → Rd. We will further discuss this in the supplementary material. NF-VGAE is a
two-step inference method that 1) starts with Gaussian random variables and then 2) transforms them
through a series of invertible mappings. We emphasize again that in NF-VGAE, the GNN output
layers are deterministic without neighborhood distribution sharing due to the deterministic nature of
the initial density parameters in q0.

4 Semi-implicit graph variational auto-encoder (SIG-VAE)

While the above two models are able to approximate more flexible and complex posterior, such trivial
combinations may fail to fully exploit graph dependency structure because they are not capable of
propagating uncertainty between neighboring nodes. To enable effective uncertainty propagation,
which is the essential factor to capture complex posteriors with graph data, we develop a carefully
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designed generative model, SIG-VAE, to better integrate variational inference and VGAE with a
natural neighborhood sharing scheme.

To have tractable posterior inference, we construct SIG-VAE using a hierarchy of multiple stochastic
layers. Specifically, the first stochastic layer q(Z |X,A) is reparameterizable and has an analytic
probability density function. The layers added after are reparameterizable and computationally
efficient to sample from. More specifically, we adopt a hierarchical encoder in SIG-VAE that injects
random noise at L different stochastic layers:

hu = GNNu(A,CONCAT(X, εu,hu−1)), where εu ∼ qu(ε) for u = 1, . . . , L, h0 = 0 (5)
µ(A,X) = GNNµ(A,CONCAT(X,hL)), Σ(A,X) = GNNΣ(A,CONCAT(X,hL)), (6)

q(Z |A,X,µ,Σ) =
∏N
i=1q(zi |A,X,µi,Σi), q(zi |A,X,µi,Σi) = N (µi(A,X),Σi(A,X)).

Note that in the equations above µ and Σ are random variables and thus q(Z |X,A) is not necessarily
Gaussian after marginalization; εu is N -dimensional random noise drawn from a distribution qu;
and qu is chosen such that the samples drawn from it are the same type as X, for example if X is
categorical, Bernoulli is a good choice for qu. By concatenating the random noise and node attributes,
the output of GNNs are random variables rather than deterministic vectors. Their expressive power is
inherited in SIG-VAE to go beyond Gaussian, exponential family, or von Mises-Fisher [11] posterior
distributions for the derived latent representations.

Figure 1: SIG-VAE diffuses the distributions of the
neighboring nodes, which is more informative than shar-
ing deterministic features, to infer each node’s latent
distribution.

In SIG-VAE, when inferring each node’s latent
posterior, we incorporate the distributions of
the neighboring nodes, better capturing graph
dependency structure than sharing determin-
istic features from GNNs. More specifically,
the input to our model at stochastic layer u is
CONCAT(X, εu) so that the outputs of the sub-
sequent stochastic layers give mixing distribu-
tions by integrating information from neighbor-
ing nodes (Fig. 1). The flexibility of SIG-VAE
directly working on the stochastic distribution
parameters in (5-6) allows neighborhood sharing
to achieve better performance in graph analytic
tasks. We argue that the uncertainty propagation in our carefully designed SIG-VAE, which is the an
outcome of using GNNs and adding noise in the input in equations (5-6), is the key factor in capturing
more faithful and complex posteriors. Note that (5) is different from the NF-VAE construction (3),
where the GNN output layers are deterministic. Through experiments, we show that this uncertainty
neighborhood sharing is key for SIG-VAE to achieve superior graph analysis performance.

We further argue that increasing the flexibility of variational inference is not enough to better model
real-world graph data as the optimal solution of the generative model does not change. In SIG-VAE,
the Bernoulli-Poisson link [41] is adopted for the decoder to further increase the expressiveness of
the generative model. Potential extensions with other decoders can be integrated with SIG-VAE if
needed. Let Ai,j = δ(mij > 0), mij ∼ Poisson

(
exp(

∑l
k=1 rkzik zjk)

)
, and hence

p(A |Z,R) =

N∏
i=1

N∏
j=1

p(Ai,j | zi, zj ,R), p(Ai,j = 1 | zi, zj ,R) = 1−e− exp (
∑L

k=1 rkzik zjk), (7)

where R ∈ RL×L
+ is a diagonal matrix with diagonal elements rk.

4.1 Inference

To derive the ELBO for model inference in SIG-VAE, we must take into account the fact that ψ has
to be drawn from a distribution. Hence, the ELBO moves beyond the simple VGAE as

L = −KL(Eψ∼qφ(ψ |X,A)[q(Z |ψ)] || p(Z)) + Eψ∼qφ(ψ |X,A)[EZ∼q(Z |ψ)[log p(A |Z)]], (8)

where hφ is defined in (1). The marginal probability density function hφ(Z|X,A) is often intractable,
so the Monte Carlo estimation of the ELBO, L, is prohibited. To address this issue and infer
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Figure 2: Swiss roll graph (left) and its latent representation using SIG-VAE (middle) and VGAE (right). The
latent representations (middle and right) are heat maps in R3. We expect that the embedding of the Swiss roll
graph with inner-product decoder to be a curved plane in R3, which is clearly captured better by SIG-VAE.
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Figure 3: Latent representation distributions of five example nodes from the Swiss roll graph using SIG-VAE
(blue) and VGAE (red). SIG-VAE clearly infers more complex distributions that can be multi-modal, skewed,
and with sharp and steep changes. This helps SIG-VAE to better represent the nodes in the latent space.

variational parameters of SIG-VAE, we can derive a lower bound for the ELBO as follows (see the
supplementary material for more details)

L = −Eψ∼qφ(ψ |X,A)[KL(q(Z |ψ) || p(Z))] + Eψ∼qφ(ψ |X,A)

[
EZ∼q(Z |ψ)[log p(A |Z)]

]
≤ L.

Further implementation details and the derivation of the surrogate ELBO can be found in the
supplementary material.

5 Experiments

Figure 4: The nodes with multi-modal pos-
teriors (red nodes) reside between different
communities in Swiss Roll graph.

We test the performances of SIG-VAE on different graph
analytic tasks: 1) interpretability of SIG-VAE compared
to VGAE, 2) link prediction in various real-world graph
datasets including graphs with node attributes and without
node attributes, 3) graph generation, 4) node classification
in the citation graphs with labels. In all of the experi-
ments, GCN [19] is adopted for all the GNN modules in
SIG-VAE, Naive SIG-VAE, and NF-VGAE, implemented
in Tensorflow [1]. The PyGSP package [12] is used to
generate synthetic graphs. Implementation details for all
the experiments, together with graph data statistics, can
be found in the supplementary material.

5.1 Interpretable latent representations

We first demonstrate the expressiveness of SIG-VAE by illustrating the approximated variational
distributions of node latent representations. We show that SIG-VAE captures the graph structure
better and has a more interpretable embedding than VGAE on a generated Swiss roll graph with
200 nodes and 1244 edges (Fig. 2). In order to provide a fair comparison, both models share an
identical implementation with the inner-product decoder and same number of parameters. We simply
consider the identity matrix IN as node attributes and choose the latent space dimension to be three
in this experiment. This graph has a simple plane like structure. As the inner-product decoder
assumes that the information is embedded in the angle between latent vectors, we expect that the
node embedding to map nodes of the Swiss roll graph into a curve in the latent space. As we can
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Table 1: Link prediction performance in networks with node attributes.

Method Cora Citeseer Pubmed
AUC AP AUC AP AUC AP

SC [31] 84.6± 0.01 88.5± 0.00 80.5± 0.01 85.0± 0.01 84.2± 0.02 87.8± 0.01
DW [25] 83.1± 0.01 85.0± 0.00 80.5± 0.02 83.6± 0.01 84.4± 0.00 84.1± 0.00
GAE [18] 91.0± 0.02 92.0± 0.03 89.5± 0.04 89.9± 0.05 96.4± 0.00 96.5± 0.00
VGAE [18] 91.4± 0.01 92.6± 0.01 90.8± 0.02 92.0± 0.02 94.4± 0.02 94.7± 0.02
S-VGAE [11] 94.10± 0.1 94.10± 0.3 94.70± 0.2 95.20± 0.2 96.00± 0.1 96.00± 0.1
SEAL [40] 90.09± 0.1 83.01± 0.3 83.56± 0.2 77.58± 0.2 96.71± 0.1 90.10± 0.1
G2G [9] 92.10± 0.9 92.58± 0.8 95.32± 0.7 95.57± 0.7 94.28± 0.3 93.38± 0.5

NF-VGAE 92.42± 0.6 93.08± 0.5 91.76± 0.3 93.04± 0.8 96.59± 0.3 96.68± 0.4
Naive SIG-VAE 93.97± 0.5 93.29± 0.4 94.25± 0.8 93.60± 0.9 96.53± 0.7 96.01± 0.5
SIG-VAE (IP) 94.37± 0.1 94.41± 0.1 95.90± 0.1 95.46± 0.1 96.73± 0.1 96.67± 0.1
SIG-VAE 96.04± 0.04 95.82± 0.06 96.43± 0.02 96.32± 0.02 97.01± 0.07 97.15± 0.04

see in Fig. 2, SIG-VAE derives a clearly more interpretable planar latent structure than VGAE. We
also show the posterior distributions of five randomly selected nodes from the graph in Fig. 3. As we
can see, SIG-VAE is capable of inferring complex distributions. The inferred distributions can be
multi-modal, skewed, non-symmetric, and with sharp and steep changes. These complex distributions
help the model to get a more realistic embedding capturing the intrinsic graph structure. To explain
why multi-modality may arise, we used Asynchronous Fluid [24] to visualize the Swiss Roll graph
by highlighting detected communities with different colors in Fig. 4. Note that we used a different
layout from the one in Fig. 2(a) to better visualize the communities in the graph. The three red (two
orange) nodes are the nodes with multi-modal (skewed) distributions in Fig. 3. These nodes with
multi-modal posteriors reside between different communities; hence, with a probability, they could
be assigned to multiple communities. The supplementary material contains additional results and
discussions with a torus graph, with similar observations.

5.2 Accurate link prediction

We further conduct extensive experiments for link prediction with various real-world graph datasets.
Our results show that SIG-VAE significantly outperforms well-known baselines and state-of-the-art
methods in all benchmark datasets. We consider two types of datasets, i.e., datasets with node
attributes and datasets without attributes. We preprocess and split the datasets as done in Kipf and
Welling [18] with validation and test sets containing 5% and 10% of network links, respectively. We
learn the model parameters for 3500 epochs with the learning rate 0.0005 and the validation set used
for early stopping. The latent space dimension is set to 16. The hyperparameters of SIG-VAE, Naive
SIG-VAE, and NF-VGAE are the same for all the datasets. For fair comparison, all methods have
the similar number of parameters as the default VGAE. The supplementary material contains further
implementation details. We measure the performance by average precision (AP) and area under the
ROC curve (AUC) based on 10 runs on a test set of previously removed links in these graphs.

With node attributes. We consider three graph datasets with node attribbutes—Citeseer, Cora, and
Pubmed [28]. The number of node attributes for these dataset are 3703, 1433, and 500 respectively.
Other statistics of the datasets are summarized in the supplement Table 1. We compare the results
of SIG-VAE, Naive SIG-VAE, and NF-VGAE with six state-of-the-art methods, including spectral
clustering (SC), DeepWalk (DW) [25] , GAE [18], VGAE [18], S-VGAE [11], and SEAL [40].
The inner-product decoder is also adopted in SIG-VAE to clearly demonstrate the advantages of the
semi-implicit hierarchical variational distribution for the encoder.

We use the same hyperparameters for the competing methods as stated in [40, 18, 11]. As we can see
in Table 1, SIG-VAE shows significant improvement in terms of both AUC and AP over state-of-the-
art methods. Note the standard deviation of SIG-VAE is also smaller compared to other methods,
indicating stable semi-implicit variational inference. Compared to the baseline VGAE, more flexible
posterior in three proposed methods SIGVAE (with both inner-product and Bernoulli-Poisson link
decoders), Naive SIG-VAE, and NF-VGAE can clearly improve the link prediction accuracy. This
suggests that the Gaussian assumption does not hold for these graph structured data. The performance
improvement of SIG-VAE with inner-product decoder (IP) over Naive SIG-VAE and NF-VGAE
clearly demonstrates the advantages of neighboring node sharing, especially in the smaller graphs.
Even for the large graph Pubmed, on which VGAE performs similar to S-VGAE, our SIG-VAE still
achieves the highest link prediction accuracy, showing the importance of all modeling components
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Table 2: AUC and AP of link prediction in networks without node attributes. * indicates that the
numbers are reported from Zhang and Chen [40]. The supplementary material contains the complete
result tables with standard deviation values.

Metrics Data MF∗ SBM∗ N2V∗ LINE∗ SC∗ GAE VGAE∗ SEAL∗ G2G NF-VGAE N-SIG-VAE SIG-VAE(IP) SIG-VAE
USAir 94.08 94.85 91.44 81.47 74.22 93.09 89.28 97.09 92.17 95.74 94.22 97.56 94.52
NS 74.55 92.30 91.52 80.63 89.94 93.14 94.04 97.71 98.18 98.38 98.00 98.75 99.17

AUC Yeast 90.28 91.41 93.67 87.45 93.25 93.74 93.88 97.20 97.34 97.86 93.36 98.11 98.32
Power 50.63 66.57 76.22 55.637 91.78 72.21 71.20 84.18 91.35 94.61 93.67 95.04 96.23
Router 78.03 85.65 65.46 67.15 68.79 55.73 61.51 95.68 85.98 93.56 92.66 95.94 96.13
USAir 94.36 95.08 89.71 79.70 78.07 95.14 89.27 95.70 90.22 96.27 94.48 97.50 94.95
NS 78.41 92.13 94.28 85.17 90.83 95.26 95.83 98.12 97.43 98.52 97.83 98.53 99.24

AP Yeast 92.01 92.73 94.90 90.55 94.63 95.34 95.19 97.95 97.83 98.18 94.24 97.97 98.41
Power 53.50 65.48 81.49 56.66 91.00 77.13 75.91 86.69 92.29 95.76 93.80 96.50 97.28
Router 82.59 84.67 68.66 71.92 73.53 67.50 70.36 95.66 86.28 95.88 92.80 94.94 96.86

in the proposed method including non-Gaussian posterior, using neighborhood distribution, and the
sparse Bernoulli-Poisson link decoder.

Without node attributes. We further consider five graph datasets without node attributes—USAir,
NS [22], Router [29], Power [34] and Yeast [32]. The data statistics are summarized in the supplement
Table 1. We compare the performance of our models with seven competing state-of-the-art methods
including matrix factorization (MF), stochastic block model (SBM) [3], node2vec (N2V) [14], LINE
[30], spectral clustering (SC), VGAE [18], S-VGAE [11], and SEAL [40].

For baseline methods, we use the same hyperparameters as stated in Zhang et al. [40]. For datasets
without node attributes, we use a two-stage learning process for SIG-VAE. First, the embedding of
each node is learned in the 128-dimensional latent space while injecting 5-dimensional Bernoulli
noise to the system. Then the learned embedding is taken as node features for the second stage to learn
16 dimensional embedding while injecting 64-dimensional noise to SIG-VAE. Through empirical
experiments, we found that this two-stage learning converges faster than end-to-end learning. We
follow the same procedure for Naive SIG-VAE and NF-VGAE.

As we can see in Table 2, SIG-VAE again shows the consistent superior performance compared to the
competing methods, especially over the baseline VGAE, in both AUC and AP. It is interesting to note
that, while the proposed Berhoulli-Poisson decoder works well for sparser graphs, especially NS and
Router datasets, SIG-VAE with inner-product decoder shows superior performance for the USAir
graph which is much denser. Compared to the baseline VGAE, both Naive SIG-VAE and NF-VGAE
improve the results with a large margin in both AUC and AP, showing the benefits of more flexible
posterior. Comparing SIG-VAE with two other flexible inference methods shows not only SIG-VAE
is not restricted to the Gaussian assumption, which is not a good fit for link prediction with the
inner-product decoder [11], but also it is able to model flexible posterior considering graph topology.
The results for the link prediction of the Power graph clearly magnifies this fact as SIG-VAE improves
the accuracy by 34% compared to VGAE. The supplementary material contains the results with
standard deviation values over different runs, showing the stability again.

Ablation studies have also been run to evaluate SIG-VAE with inner-product decoder in link prediction
for citation graphs without using node attributes. The [AUC, AP] are [91.14, 90.99] for Cora and
[88.72, 88.24] for Citeseer, lower than the values from SIG-VAE with attributes in Table 1 but are still
competitive against existing methods (even with node attributes), showing the ability of SIG-VAE
of utilizing graph structure. While some of the methods, like SEAL, work well for graphs without
node attributes and some of others, like VGAE, get good performance for graphs with node attributes,
SIG-VAE consistently achieves superior performance in both types of datasets. This is due to the fact
that SIG-VAE can learn implicit distributions for nodes, which are very powerful in capturing graph
structure even without any node attributes.

5.3 Graph generation

To further demonstrate the flexibility of SIG-VAE as a generative model, we have used the inferred
embedding representations to generate new graphs. For example, SIG-VAE infers network parameters
for Cora whose density and average clustering coefficients are 0.00143 and 0.24, respectively. Using
the inferred posterior and learned decoder, a new graph is generated with corresponding rk to see
if its graph statistics are close to the original ones. Please note that we have shrunk inferred rk’s
smaller than 0.01 to 0. The density and average clustering coefficients of this generated graph based
on SIG-VAE are 0.00147 and 0.25, respectively, which are very close to the original graph. We also
generate new graphs based on SIG-VAE with the inner-product decoder and VGAE. The density and
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average clustering coefficients of the generated graphs based on SIG-VAE (IP) and VGAE are same,
i.e. 0.1178 and 0.49, respectively, showing the inner-product decoder may not be a good choice for
sparse graphs. The supplementary material includes more examples.

5.4 Node classification & graph clustering

Table 3: Summary of results in terms of
classification accuracy (in percent).

Method Cora Citeseer Pubmed
ManiReg [6] 59.5 60.1 70.7
SemiEmb [35] 59.0 59.6 71.1
LP [42] 68.0 45.3 63.0
DeepWalk [25] 67.2 43.2 65.3
ICA [20] 75.1 69.1 73.9
Planetoid [38] 75.7 64.7 77.2
GCN [19] 81.5 70.3 79.0

SIG-VAE 79.7 70.4 79.3

We also have applied SIG-VAE for node classification on
citation graphs with labels by modifying the loss func-
tion to include graph reconstruction and semi-supervised
classification terms. Results are summarized in Table 3.
Our model exhibits strong generalization properties, high-
lighted by its competitive performance compared to the
state-of-the-art methods, despite not being trained specif-
ically for this task. To show the robustness of SIG-VAE
to missing edges, we randomly removed 10, 20, 50 and
70 (%) edges while keeping node attributes. The mean
accuracy of 10 run for Cora (2 layers [32,16]) are 79.5,
78.7, 75.3 and 60.6, respectively. The supplementary ma-
terial contains additional results and discussion for graph
clustering, again without specific model tuning.

SIG-VAE has demonstrated state-of-the-art performances in link prediction and comparable results
on other tasks, clearly showing the potential of SIG-VAE on different graph analytic tasks.

6 Conclusion

Combining the advantages of semi-implicit hierarchical variational distribution and VGAE with a
Bernoulli-Poisson link decoder, SIG-VAE is developed to enrich the representation power of the
posterior distribution of node embedding given graphs so that both the graph structural and node
attribute information can be best captured in the latent space. By providing a surrogate evidence
lower bound that is asymptotically exact, the optimization problem for SIG-VAE model inference
is amenable via stochastic gradient descent, without compromising the flexbility of its variational
distribution. Our experiments with different graph datasets have shown the promising capability of
SIG-VAE in a range of graph analysis applications with interpretable latent representations, thanks to
the hierarchical construction that diffuses the distributions of neighborhood nodes in given graphs.
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