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Abstract

A remarkable recent discovery in machine learning has been that deep neural networks can achieve
impressive performance (in terms of both lower training error and higher generalization capacity) in
the regime where they are massively over-parameterized. Consequently, over the last several months,
the community has devoted growing interest in analyzing optimization and generalization properties of
over-parameterized networks, and several breakthrough works have led to important theoretical progress.
However, the majority of existing work only applies to supervised learning scenarios and hence are limited
to settings such as classification and regression.

In contrast, the role of over-parameterization in the unsupervised setting has gained far less attention.
In this paper, we study the gradient dynamics of two-layer over-parameterized autoencoders with ReLU
activation. We make very few assumptions about the given training dataset (other than mild non-
degeneracy conditions). Starting from a randomly initialized autoencoder network, we rigorously prove
the linear convergence of gradient descent in two learning regimes, namely:

1. the weakly-trained regime where only the encoder is trained, and
2. the jointly-trained regime where both the encoder and the decoder are trained.

Our results indicate the considerable benefits of joint training over weak training for finding global optima,
achieving a dramatic decrease in the required level of over-parameterization.

We also analyze the case of weight-tied autoencoders (which is a commonly used architectural choice
in practical settings) and prove that in the over-parameterized setting, training such networks from
randomly initialized points leads to certain unexpected degeneracies.

1 Introduction

Deep neural networks have achieved great success in a variety of applications such as image and speech
recognition, natural language processing, and gaming AI. Remarkably, neural networks that achieve the
state-of-the-art performance in each of these tasks are all massively over-parameterized, with far more weight
parameters than the sample size of training data or the input dimension. Such networks can gain impressive
performance in terms of both (near) zero training error and high generalization capacity, which seemingly
contradicts the conventional wisdom of bias-variance tradeoffs. Surprising enough is the fact that (stochas-
tic) gradient descent or its variants can effectively find global and generalizable solutions. Explaining this
phenomenon has arguably become one of the fundamental tasks for demystifying deep learning.

As a consequence, there has been growing interest in understanding the power of the gradient descent
for over-parameterized networks. Over the past several months, a specific line of research |Li and Liang,

2018, |Allen-Zhu et all, 12018, [Zou et all, 2018, [Du_et all, 2018, |Oymak and Soltanolkotabi, 2019, |Arora et all,
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2019a, |Zou and Gu, [2019] has led to exciting theoretical progress. In particular, the seminal work of[Du et al.
[2018] shows that gradient descent on two-layer neural networks with ReLU activation provably converges
to some global minimum at a geometric rate, provided a sufficiently large number of neurons that is of
polynomial order in the sample size. The key idea that leads to this result is the following: once the network
is sufficiently wide, gradient descent does not change the individual weights much, but results in a non-
negligible change in the network output that exponentially reduces the training loss with iteration count.
This line of thinking has been subsequently refined and linked to the stability of a special kernel, called the
neural tangent kernel (NTK) [Jacot et all, [2018]. |Arora et all [2019a] shows that the minimum eigenvalue of
the limiting kernel governs both the algorithmic convergence and the generalization performance.

Despite these exciting results, the majority of existing work has focused on supervised settings and hence
are limited to tasks such as classification and regression. In contrast, the role of over-parameterization in
the unsupervised setting (for tasks such as reconstruction, denoising, and visualization) has gained much
less attention. An early example of over-parameterization in unsupervised learning can be traced back to
learning over-complete dictionaries with sparse codes [Olshausen and Field, [1997]. Another example is the
problem of learning mixtures of k well-separated spherical Gaussians, where [Dasgupta and Schulman [2007]
showed that initializing with O(klog k) centers enables expectation-maximization to correctly recover the k
components.

Interesting (but limited) progress has been made towards understanding over-parameterization for au-
toencoders, a popular class of unsupervised models based on neural networks. |[Zhang et all [2019] provided
an empirical study of training highly over-parameterized autoencoders using a single sample. They empir-
ically showed that when learned by gradient descent, autoencoders with different architectures can exhibit
two inductive biases: memorization (i.e., learning the constant function) and generalization (i.e., learning
the identity mapping) depending on the non-linearity and the network depth. [Radhakrishnan et al! [2019]
showed that over-parameterized autoencoder learning is empirically biased towards functions that concen-
trate around the training samples and hence exhibits memorization. [Buhai et al) [2019] empirically showed
that over-parameterization benefits learning in recovering generative models with single-layer latent variables
(including the sparse coding model).

None of the above papers have rigorously studied the training dynamics of autoencoder models. The loss
surface of autoencoder training was first characterized in[Rangamani et all [2017]. Subsequently,[Nguyen et al.
[2019] proved that under-parameterized (and suitably initialized) autoencoders performed (approximate)
proper parameter learning in the regime of asymptotically many samples, building upon techniques in prov-
able dictionary learning; cf. |Arora et all [2015], [Nguyen et al) [2018].

Our Contributions. In this paper, we provide the first rigorous analysis of gradient dynamics of over-
parameterized, shallow (two-layer) autoencoders. We study different training schemes and establish upper
bounds on the level of over-parameterization under which (standard) gradient descent, starting from ran-
domly initialized weights, can linearly converge to global optima provided the training dataset obeys some
mild assumptions. Our specific contributions are as follows:

1. First, we show how to extend the results in [Du et all [2018] to the setting of over-parameterized two-
layer autoencoders. This involves developing a version of NTK for multiple outputs, which can be done
in a straightforward manner by lifting the kernel matrix of a single output into a higher-dimensional
space via Kronecker products.

2. Next, we study the gradient dynamics of the weakly—tmine case where the training is done only over
the weights in the encoder layer. We obtain a bound on the number of hidden neurons (i.e., level of
over-parameterization) required to achieve linear convergence of gradient descent, starting from random
initialization, to global optimality.

3. Next, we study the gradient dynamics of the jointly-trained case where both the encoder and decoder
are trained with gradient descent. Interestingly, our bound for over-parameterization in the jointly

I This distinction of weak- vs. joint-training has been introduced in earlier work such as[Arora et all [2019H].



trained case is significantly better compared with the weakly-trained case.

4. Finally, we study a special family of autoencoders for which the encoder and decoder are weight-tied, i.e.,
the two layers share the same weights (this is a common architectural choice in practical applications).
For the weight-tied case, we show that even without any training, O(d/e) hidden units are able to
achieve € test error where d is the input dimension. Indeed, as the number of hidden unit increases,
the autoencoder approximately recovers an identity map. Since the identity map is not particularly
meaningful, we speculate that training of weight-tied autoencoders under over-parameterization may
lead to unexpected degeneracies.

Techniques. Our analysis essentially builds upon the technique of [Du et al) [201§] for analyzing the global
convergence of gradient descent using the neural tangent kernel. The special case of autoencoder networks
is somewhat more complicated since we now have to deal with multiple outputs, but the use of Kronecker
products enables us to derive concise NTK’s for our setting.

The work of [Du et all [2018] and subsequent papers study the weakly-trained case for the supervised
setting where the second layer is fixed. We derive analogous bounds for the autoencoder setting. Moreover,
we derive a new result for the jointly-trained case and obtain a significantly improved bound on the requisite
level of over-parameterization. Our result is based on three key insights:

(i) the Stein identity applied with ReLU enables us to exactly derive the limiting kernel with respect to
the decoder’s weights and link to the weakly-trained case;

ii) thanks to the linear decoder , the corresponding kernel is smooth, and the improved smoothness allows
g
gradient descent to move greater amount from the initial point; and

(iii) with this improved smoothness, we can derive a sharper characterization of the descent trajectory
length in Frobenius norm instead of column-wise Euclidean norm.

2 Overview of main results

Notation. We use uppercase letters to denote matrices, and lowercase for vectors or scalars. An expectation
is the notation C' which represents a generic scalar constant, whose value can change from line to line. A
vector is interpreted as a column vector by default. We denote by z; € R? the i*"-column (or sample) of the

data matrix X, and W = [wy, ..., wy,] € R¥*™ denotes a weight matrix. Whenever necessary, we distinguish
between the weight vector w, at different algorithmic steps using an explicit w,(t) indexed by the step ¢.
For a matrix A = [ay,...,an] € R™*™ vec(A) = [a11,...,0d1,- -, Q1m, - .- Gam] ' Vvectorizes the matrix A by

stacking its columns. The symbol ® denotes the Kronecker product.

We use N (-) and Unif(-) to denote the Gaussian and uniform distributions respectively. We simply write
[, instead of E,,ar,r) for brevity. Throughout the paper, we refer to an arbitrary § € (0,1) as the failure
probability of some event under consideration.

2.1 Two-layer autoencoders

Our goal is to analyze the dynamics of learning two-layer autoencoders with gradient descent. We focus on
the two-layer autoencoder architecture with the rectified linear unit (ReLU), defined by ¢(z) = max(z,0) for
any z € R. In below, when ¢ is applied to a vector or a matrix, the ReLLU function is applied element-wisely.
Given an input sample = € R?, the autoencoder returns a reconstruction u € R¢ of z, given by

1 1 &
U= —Ap(W'z) = — a,é(w, z),
W) = g 2 o)
where W = [wy,...,wy] and A = [ay, ..., ap] are weight matrices of the first (encoder) and second (decoder)

layers respectively. We do not consider bias terms in this work. However, in principle, the bias vector for
the hidden layer can be regarded as the last column of W with the last dimension of x always being 1.



Remark 2.1 (Choice of scaling factor). Notice that we have scaled the output with 1/v/md, where 1/y/m
is the factor for the first layer and 1/v/d for the second layer. Such scaling has been utilized in mathematical
analyses of supervised networks [Jacot et all; [2018] as well as of autoencoders |Li and Nguyen, 2018]. Since
the ReLU is homogeneous to scaling, such factors can technically be absorbed into the corresponding weight
matrices W and A, but we find that keeping such factors explicit is crucial to understand the asymptotic
behavior of neural network training as the network widths (i.e., m in this case) go to infinity.

Let us now set up the problem. Suppose that we are given n training samples X = [z1,22,...,z,]. We
assume that each weight is randomly and independently initialized. Then, we train the autoencoder via
gradient descent over the usual squared-error reconstruction loss:

1 & 1 1 —
L(W,A) = B Z”wz‘ - mA¢(WTfCi)||2 =3 ZH% —uil*. (2.1)
i=1 i=1

Depending on which weight variables are being optimized, we consider three training regimes:

e Weakly-trained case: This corresponds to the regime where the loss function (Z1)) is optimized
over the weights W while keeping A fixed. A different form of weak training is to fix the encoder and
optimize ([ZI) over A. Indeed, this practice is perhaps a folklore: it corresponds to standard kernel
regression where the global convergence depends on the Hessian associated with random ReLU features.
We do not pursue this case any further since kernel methods are well understood, but note in passing
that the Hessian will eventually show up in our analysis.

e Jointly-trained case: This corresponds to the regime that () is optimized over both W and A.
This case matches practical neural network training, and performs better than the weakly trained
case. We will show that the contrast between weakly-trained and jointly-trained cases arises due to
the nature of the different NTK’s and our analysis may pave the way to better understanding of
autoencoder training.

e Weight-tied case: Weight-tying is another common practice in training autoencoders. Here, one sets
the encoder and decoder weights to be the same, i.e., A = W, and optimizes (ZI]) over the common
variables W. We study this problem from the perspective of over-parameterization and show that this
case leads to somewhat unexpected degeneracies.

Throughout the paper, unless otherwise specified, we make the following assumptions:
Assumption 1. All training samples are normalized, i.e., ||z;|| =1 fori=1,...,n.

We gather the training samples into the data matrix X = [z1,29,...,2,] and define )\, = [|XTX].
Assumption [I] implies that ||X| = /n and hence 1 < A, < n. We regard A, as a parameter that
depends on the data geometry. For certain families of matrices (e.g., those with independent Gaussian
entries), A, ~ O(max(n/d, 1)), which can be o(n) depending on how large n is in terms of d. We note that
throughout our analysis, X is regarded as fixed,and we will focus on the randomness in the weights.

Assumption 2. Consider a random vector w ~ N(0,1) and define ¥; = L[w " x; > O]z; for eachi € [n]. Let
X = [#1,. ., &n]. Then, Amin(Eu[X X)) = Ag > 0.

The matrix E,[X T X] is the so-called Gram matrix from the kernel induced by the ReLU transformation
and has been extensively studied in Xie et all [2016], [Tsuchida et all [2017], [Du et all [2018§], |Arora et al.
[20194]. In fact, Du et all [2018] proves a sufficient condition that as long as no pair of training samples are
parallel, this assumption holds.

The above assumptions are relatively mild, which are in sharp contrast with assuming a specific generative
model for the data (e.g., dictionary models, mixture of Gaussians [Nguyen et all, 2019, |Buhai et all, 2019])
that have so far been employed to analyze autoencoder gradient dynamics.



2.2 Results
We adopt the framework introduced in [Du et al! [2018]. Our proofs proceed generally as follows:

(i) We will consider the continuous flow of the autoencoder outputs U(t) = [uy(t), ua(t), ..., u,(t)] € R*"
corresponding to the samples in X at time t. This continuous flow can be morally viewed as the
execution of gradient descent with infinitesimal learning rate. This enables us to write:

dvec(U(t))

1
T = K (Ovee(X —U(1),

where K(t) is a kernel matrix.

(ii) From this characterization, we can infer that the spectrum of K (t) governs the dynamics of the outputs.
To derive explicit convergence bounds, we will first prove that K (0) has positive minimum eigenvalue
with high probability. This is achieved via using concentration arguments over the random initialization.
Then, we will upper-bound the movement of each individual weight vector from the initial guess and
hence bound the deviation of K(t) from K (0) in terms of spectral norm.

iii) By discretizing the continuous-time analysis, we will obtain analogous bounds for gradient descent with
g Y g g
a properly chosen step size and show that gradient descent linearly converges to a global solution.

Our results are informally stated in the following theorems:

Theorem 2.1 (Informal version of Theorems [{.1l and [4.2]). Consider an autoencoder that computes output
U = ﬁAqﬁ(WTx) where the weight vectors are initialized with independent vectors w, ~ N(0,I) and

ay ~ Unif{—1,1}¢ for all v € [m]. For any & € (0,1) and m > C"i%;g\“ for some large enough constant C,
the gradient descent over W linearly converges to a global minimizer with probability at least 1 — § over the

randomness in the initialization.

Theorem 2.2 (Informal version of Theorems [i.1l and [£.2]). Consider an autoencoder that computes output
U = ﬁAqﬁ(WTx) where the weight vectors are initialized with independent vectors w, ~ N(0,I) and

a, ~ Unif{—1,1}% for all r € [m]. For any § € (0,1) and m > C%Q—Z‘ for some large enough constant C,
0

the gradient descent jointly over W and A linearly converges to a global minimizer with probability at least
1 — 6 over the randomness in the initialization.

Comparisons with existing work. We summarize the quantitative implications of our results in Table[I]
In this table, we compare with [Du et all [2018], |(Oymak and Soltanolkotabi [2019], [Zou and Gu [2019] that
achieve the best known bounds to our knowledge.

We emphasize that the factor d in our bounds arises due to the fact that our network produces high-
dimensional outputs (dimension d in the case of autoencoders) while the previous works have focused on
scalar outputs. Note also that the input dimension d is implicitly hidden in Ag and A,.

For weakly-trained networks with a single output, we (slightly) improve the order of over-parameterization:

m = () (’;jz%) over the previous bound € (r%%) in Du et al! [2018, Theorem 3.2] by explicitly exposing the
role of the spectral norm )\, of the data.

For the jointly-trained regime, we obtain a significantly improved bound over IDu et all [2018, Theorem
3.3]. Our result is consistent with |(Oymak and Soltanolkotabi [2019, Theorem 6.3], but we have both layers
jointly trained; the proof technique in [Oymak and Soltanolkotabi [2019, Theorem 6.3] is different from ours
(bounding Jacobian perturbations), and does not seem to be easily extended to the jointly trained case.

Let us better understand the intuition behind the bounds in Table[lin terms of the dimension d and the
sample size n. We emphasize that in the fairly typical regime of machine learning where n > d and A, ~ n/d,
the level of over-parameterization for the single output is moderate (of order n#/d®). Since autoencoders have

an output dimension d, the factor-d in the bounds is natural in the jointly-trained case by characterizing the



trajectory length by Frobenius norm. This is consistent with the result in [Zou and Gu [2019]. Our bound
is different from that in Zou and Gu [2019] in that we make assumption on the minimum eigenvalue Ag
while they assume a lower bound on the sample separation A. A direct universal comparison between the
two bounds is difficult; however, [Oymak and Soltanolkotabi [2019] shows an upper bound Ao > A/100n2.
Finally, we note that initializing A with i.i.d. Rademacher entries keeps our analysis in line with previous
work, and an extension to Gaussian random initialization of A should be straightforward.

| Regime | Reference | Single output | Multiple output |
Du et al. [2018] O X
Weakly-trained This work Cg\g ?é‘ C’nf;\%zg\n
Oymak and Soltanolkotabi [2019] C n;g‘ X
Du et al. [2018] Crloeln /o) X
Jomt-tramed Zou and Gu [2019] Cxa cnt
This work C ;%)‘ 53"2 C 7;\222

Table 1: Comparison of our over-parameterization bounds with the known results in [Du et all, 12018, Theorem 3.2
and Theorem 3.3], [Ovmak and Soltanolkotabi, 12019, Theorem 6.3] and [Zou and Gu, |2019, Table 1]. Here, d is
the input dimension, n is the training size, Ao is the smallest eigenvalue of the Gram matrix, A\, is the maximum
eigenvalue of the covariance matrix and C' is some sufficiently large constant. A is the smallest distance between any
pair of distinct training points.

3 The Neural Tangent Kernel for Autoencoders

3.1 NTK for general autoencoders

Let us first derive the neural tangent kernels for general autoencoders (possibly deep and with more than
2 layers) with multiple outputs in a compact form. Given n ii.d samples X = [x1,z9,...,z,] and the
autoencoder f(6,x), we consider minimizing the squared-error reconstruction loss:

1 & 1 1«
L(9) = 3 > i — ﬁf(ﬂ%)”z =3 > i - uil?,
im1 i—1

where 6 is a vector that stacks all the network parameters (e.g. W and A) and u; = ﬁf(@, z;) € R? for

every i = 1,2,...,m denotes the corresponding output. The evolution of gradient descent over L(#) with an
infinitesimally small learning rate is represented by the following ordinary differential equation (ODE):
de(t
% = —VoL(0(t)). (3.1)

The time-dependent NTK for autoencoders can be characterized as follows:
Lemma 3.1. Denote by U(t) = [uy(t), ua(t), ..., un(t)] € R the corresponding outputs of all the samples
in X, i.e., ui(t) = f(0(t),z;). The dynamics of U(t) is given by the ODE:

dvec(U(t)) 1
— = K Ovee(X ~U®)),

where K(t) is an nd x nd positive semi-definite kernel matriz whose (i, j)-th block of size d x d is:

2 (g5r0.2)- (%f(9,xj)>T-



Proof. Note that in the supervised learning setting with a single output, the (4, j)-th block is a single scalar
equal to the inner product of two gradients. We prove this using simple calculus. The gradient of the loss
over the parameters 6 is

-

3

" du,
VoL(0) =—)_ o (i = ui),
i=1

where du; /00 denotes the Jacobian matrix of the output vector u; with respect to §. Combining with B.1I),
the continuous-time dynamics of the prediction for each sample ¢ € [n] is specified as

du; auz
= L
= T (VoL (6))
" Quy 3u
=20 a9 W~ W)
Jj=1
Vectorizing dit), we get
dvec(U(t))

1
T = EK(t)vec(X = U(t)),

where K (t) (or K) is an nd X nd matrix whose (¢, j)-block is of size d x d:

K_auiau}_ 1 (a

20 a0~ a\ag’ “)) (gef(e ”””)T'

One can easily verify that K(t) is positive semi-definite.
[
If the parameters 6(0) are assumed to be stochastic, then the (deterministic) neural tangent kernel (NTK)

is defined as:
9 T
) (55/0.2)) H@) ] (3.2)

Note that K is time-independent. If the network is randomly initialized and its width is allowed to
grow infinitely large, K (t) converges to K°°, and remains constant during training. Our goal is to show
that if the width is sufficiently large (not necessarily infinite), then K () &~ K(0) ~ K°°, and the gradient
dynamics are governed by the spectrum of K°.

)
(K%)= %Ee@ [( ErIALED)

0=0(0)

3.2 NTK for two-layer autoencoders

Let us now specialize to the case of two-layer autoencoders with ReLU activation. Since we consider the
two training regimes, including the weakly-trained and jontly-trained, we first give the expression of a few
base kernels whose appropriate compositions produce the final kernel for each individual case. The precise
derivation of each regime is given in the next few sections.

Again, we consider the reconstruction loss:

1 < 1 2 1 - 2
A) == 2 — ——=Ad(W " 2))||” = = Ty — Uil
)= 5 b= AW Tl = 53 o
where the weights are independently initialized such that:

w,(0) ~N(0,1), a,(0) ~Unif{-1,1}4 r=1,...,m.



Here the minimization can be either over the encoder weights W, or the decoder weights A, or both W and
A. Let us denote _
Xo(t) = [Llwp () w1 > O, Uy () > Ol .

If we fix A and optimize the loss L(W, A) over W, we get
1 m
SEDIR AUy AUE
m :

If we fix W and optimize the loss L(W, A) over A, we get

- %i ()T X) @ 1

Writing these kernels in Kronecker product form allows us to clearly visualize the connection to the supervised
learning case, and enables characterization of their spectrum. Intuitively, in the jointly-trained case, since
both W and A depend on ¢, an invocation of the chain rule leads to the sum G(t) + H(t) being the “effective”
kernel that governs the dynamics.

In the infinite-width limit where m — oo, the NTKs in the corresponding training regimes reduce to
compositions of the following fixed deterministic kernels:

G = Ey(0),a(0)[X(0) "X (0) ® a(0)a(0) "] = Eq(0)[X(0) "X (0)] ® Iy,

H = By o) [6(XT0(0))p(w(0)T X) @ I] = B [X(0)TX(0)] ® .

To derive the above expressions, we require independence between the initial choices W(0) and A(0) and an
invocation of the Stein identity in Lemma [AT] for a Gaussian vector w:

Ewl[d(w  z)p(w' z;)] = &) By [wliw z; > 0)¢(w ;)]

_ TR, {% (1w > 0j¢(w ;)

=E, [x x]]l[w—r:vi > O,wT:Cj > OH ,

which means that H; = G755 for all 4, j = 1,2,.
In fact, both the kernel forms G(t), H (t) have appeared in previous work (cf.[Du_et all [2018],/Oymak and Soltanolkotabi
[2019], but the relation H> = G*° has not been observed for ReL.U networks to the best of our knowledge.
Somewhat curiously, we will show that the crucial component of the time-dependent kernel in the jointly-
trained regime, H(t) (within H(t) + G(t)), is better-behaved than the corresponding kernel in the weakly-
trained regime, G(t), thanks to its better Lipschitz smoothness, even though the respective limiting kernels
are the same. This improved smoothness allows us to derive a much better bound on kernel perturbations with
respect to changing weights, and this results in a significant improvement in the level of over-parameterization

(Theorem 222)).
4 Weakly-trained Autoencoders
We now analyze various training regimes; these will follow from different compositions of the above NTK’s.

In each of the analyses, we will first set up the corresponding NTK, study the gradient dynamics with
infinitesimal step size (gradient flow), and then appropriately discretize the flow to get our final results.



4.1 Gradient flow

Consider the weakly-trained regime with the objective function:
= 1 o= = Ao ) @)
23 md

where the corresponding minimization is only performed over W. Suppose that the weight matrices W and
A are randomly initialized such that

wi;(0) ~ N(0,1), ai;(0) ~ Unif({£1})

are drawn independently for each all (¢, 7). After the initialization, we keep A fixed throughout and apply
gradient descent learning over W with step size n:

Wk +1)=W(k) —nVwLW(k)), k=0,1,2,....
Let us derive the neural tangent kernel for this training regime. We first calculate the gradient of L(W) with

respect to W. Since A¢p(W Tx) = > a,¢(w, z) for any x € R?, it is convenient to compute the gradient
with respect to each column w,. The gradient V., L(WW) of the loss in ([@I]) over w, is given by:

V. L= —ZJT(ui)T(x- —u;) = —_Z w x; > Olayx T(xi—ui), (4.2)
) -:
where J,. (uz)ﬂ denotes the Jacobian matrix of the output vector u; with respect to w,.:

Jp(ui) = arx] ¢ (w) ) = Lwlz; > Oa,z; . (4.3)

-
QU

1
vmd
Let us consider the gradient flow for the weight vector w,(t) via the following ODE:

dw,(t)
dt

= Vo LW (). (4.4)

Using (£.2) and ([@4), the continuous-time dynamics of the prediction for each sample i € [n] is:

duz = Z (ZJ u;)d, ) (xj; — uj).

7j=1 \r=1

Vectorizing dg ), we get the equation that characterizes the dynamics of U(t):

dvec(U(t)) 1
— = K Ovee(X ~U®)), (4.5)

where K(t) is the nd x nd matrix whose (i, j)-block is of size d x d and defined as
= 1
K(t); = dz Jo(ug)J =— Z 1w, )Tz > 0,w.()Tx; > 0]z zja.a, .

If we denote

X, (t) = []l[wr(t)Tzzrl > 0)zy, ..., Uwe(t) Tan > O]xn]

2Note that ¢(z) is differentiable everywhere except at z = 0, at which the derivative will be considered as 0.



then we can write K (t) in Kronecker form:

K(t) = Zm: X, ()T X, (t) ® aya .
r=1

1
m
Since W(0) and A(0) are randomly initialized, in the limit as m — oo, K (0) converges to the NTK:

K = Ew(0),400)[/(0)]
= Eu(0),a(0)[ X (0) " X (0) @ a(0)a(0) ]
=E,[X"X|®1,

where the last step follows from the independence of w(0) and a(0).

By Assumption [2 Apin(K*°) = Amin(Ew [)N(T)?]) = Ao > 0. In other words, the NTK kernel is strictly
positive definite. We want to bound the minimum eigenvalue of K (0) at the initialization W (0) and prove
K(t) =~ K(0) & K> when m is large enough.

Now, we state the main theorem for the convergence of the gradient flow:

Theorem 4.1 (Linear convergence of gradient flow, weakly-trained regime). Suppose Assumptions[dl and
[@ hold. Suppose at initialization that the weights are independently drawn such that w, ~ N(0,I) and

ar ~ Unif({£1}%) for all v € [m]. If m > C"i‘izg\“ for a constant C > 0, then with probability at least 1 — 6
0

Aot
IX = U@} < exp(=2) IX = U Ol

To prove this theorem, we use the auxiliary results from Lemmas [£.1] and [4.3]

Lemma 4.1. Foranyd € (0,1), if m > CM for some large enough constant C, then with probability
0
at least 1 — 8, one obtains || K(0) — K| < A\o/4 and Amin(K(0)) > 3X/4 .

The proof of this Lemma is given in Appendix [Bl

Remark 4.1. Compared with the results in [Du et all [2018], [Song and Yang [2019], our bound exposes the
dependence on the data X through the spectral norm of X and the dimension d. When )\, is much smaller
than n, our bound improves over these aforementioned results. For example, if the training samples are
drawn from certain distributions (e.g., Gaussians, or from sparsely used dictionary models), the bound can

be as low as m ~ O(d).

The next step in our analysis is to upper bound the spectral norm of the kernel perturbation, ||K(t) —
K (0)||, with high probability.

Lemma 4.2. Suppose w, ~ N(0,1) and a, ~ Unif({+1}?) are drawn independently for all r € [m]. For
any 6 € (0,1) and some R > 0, with probability at least 1 —§:

. 2n2dR
sup ) - Kw) < 2
{w=(W1,...,; W ):||Wr—w, || <R
Vre[m|}

: (4.6)

where K(w) = LY X (w)T X (w,) ® ara, .

Remark 4.2. One may ask why not to directly bound K (t) — K(0) for each time ¢ but need the supremum

over the ball near each w,. Basically, since w(t) depends on W (0) and A(0), directly working on K (t) — K(0)
is difficult. The uniform bound (8] allows us to overcome this dependence when applied to K (t) — K(0).

Note that in this lemma we use K(w) to indicate that the kernel K is being evaluated at the weight
vectors w, and ignore the time index ¢. In this Lemma, we use X (w,.) to denote X, evaluated at w;..

10



Proof. For simplicity of notation, we use supg to represent the supremum in (6], and supg to represent
SUD{ .+ [, —w, <R}~ L0 prove this lemma, we work on the Frobenius norm instead of the spectral norm. Let

us first write

Next,

1K (@) = K(w)||* < || K (@) - K (w)|l7 = Z [ szar a] ||

7,7=1

n m
1 T
e | 2 || 2o zranal

i,7=1 r=1

2

IN

The last step follows from the fact that |z z;| < 1 due to Cauchy-Schwartz. Therefore,

m

HZ Z’Lj’l"a’l"
Z |Zijr|||ara:||F

SIH

sup| K (w) — K(w)

| /\

.

MS |\:M= “H'M=

IN

IA
3= SIH

sup |zijr|,
ij=1r=1 %
since |ja,a, || = lla||* = d. Now we take expectation over the random vector w,’s on both sides:
Euloupl () ~ K()] < & 50 3 Eufoup ]
@ - m
T i,j=1r=1
Next, we bound E, [supg, |2ijr[]. By definition of 2y,
|zijr| = [L[w,) z; > 0,w,) x; > 0] — 1[w, z; > 0, @, x; > 0]|
< |Lfw, z; > 0] = 1@, z; > 0] + |1[w, z; > 0] — L[w, x; > 0]|
< 1w, @] < R] + L[|w, 25| < R]. (4.7)

The last step follows from the results in [Du et all, 2018, Lemma 3.2]. So we get

E,[sup 2450 [] < B [L[w] i] < R]+ L[jw; ;| < R]

Wr.

4R
= 2P2~N(O,l)[|z| < R] < —=< 2R.

Ver

Therefore,
Ew[sngK(@) — K(w)||] < 2n2dR.

Finally, by Markov’s inequality, with probability at least 1 — ¢:

2n2dR
5

sup|| K (@) — K(w)[| <

11



Corollary 4.1. Suppose ||w,(t) —w,.(0)|| < R £ 8’){5‘2 for all v € [m] and t > 0 with probability at least 1 —§.
We have N
Aumia (K (8)) >

A2 dlog(nd/d)

with probability at least 1 — 30 if m > C v
0

Proof. This is the direct consequence of Lemma [IIland Lemma[2l Since ||w,(t) —w,(0)|| < R = 8)7‘1026(1 with
probability at least 1 — § for all ¢ > 0, then

A
| K (t) — K(0)]] < 2n2dR6 = ZO
with probability at least 1 — 26. Using Weyl’s inequality, we can bound:

Amin (K (1)) = Amin (K (0)) — [[K(t) — K(0)[| > Ao/2

A2 dlog(nd/d)

with probability at least 1 — 36 if m > C as stated in Lemma 1]

A3
|
In what follows, we show that ||w,(¢) — w,(0)|| < R with high probability if m is sufficiently large.
Lemma 4.3. Fizt > 0. Suppose Amin(K(s)) > Xo/2 for all 0 < s < t. Then,
2 Aos 2
IX = U(s)l- < exp { === ) [ X = U(O)[-
Also, for eachr =1,2,...,m:
dv || X = U(0
mAo
Proof. For all s € [0,¢), we have
d ) L1
d—Hvec(X —U(s))|l5 = —2vec(X — U(s)) EK(S)VGC(X —U(s))
s
2
< =~ Amin (K (s))[[vec(X — U(s))|I?
Ao 2
<-2x v
by the assumption Amin(K(8)) > Ao/2. Therefore, the loss at time s is upper-bounded by
I1X = U (s)l7 = lIvee(X = U(s))]”
Aos 2
< _ 02 _
< exp(= 257 Jvee(X — U (0))]
)\QS 2
< 202 - .
< exp(==2)IX —U(O)3, (48)

which decays exponentially with time s at rate Ao /d.

12



To upper bound the movement of the weights ||w, () — w,(0)||, we use the above result while expanding
the derivative of w;(s) over time 0 < s < t:

H%MT(S) - —VwTL(W(S))’
. ﬁémmzml = o)
_ \/l_dXT(X U(s) ar
X1l

lix v,

IN

Vmd

< /22 exp(=has/d) 1X ~ VO

where the last step follows from ||a,||* = d, || X||* = A, and BEq. @X). From the differential equation, w,(s)
is continuous for all s € [0,), and so is ||w,(s) — w,(0)||. Consequently, we can take the limit for ¢’ — ¢:

t/

_ — i / < il
[[wr(t) — wr(0)]|, tl,lin)t”wr(t) wy(0)]] tl/lint A dswr(s) ds
¢ VA exp(=dos/d) | X = UO)]]
< lim ds

'St J, vm
< d\/)\nHX — U(O)HF A R
>~ \/m)\o )

since exp(—/\os / d) is continuous at s = t. Therefore, we finish the proof.

|
Lemma 4.4. If R’ < R, then Anin(K(t)) = 3o for all t > 0. Moreover, |wy(t) — w,(0)| < R’ and
IX = U7 < exp(=241)|X = U(0)||F: for all r € [m)].

Proof. We will prove this by contradiction. Assume the conclusion does not hold, meaning there exists ¢g
such that:
to=1nf {t > 0 : Amin (H (1)) < Xo/2}.

We will argue that ¢y > 0 using the continuity. Since w,(¢) is continuous in ¢, K (¢) and Apmin (K (t)) are also
continuous. Therefore, there exists ¢’ > 0 such that for any 0 < € < \g/4 we have

)‘miﬂ(K(t/)) > )\mm(K(O)) —€> )\0/2
Since tg > 0, then for any 0 < s < tg, Amin(H(s)) > Ao/2. By Lemma[£3] we have for all r € [m]:
|wy(to) — wr(0)|| < R" < R.

Corollary [4.1] implies that Ao(H (t0)) > Ao/2, which is a contradiction.
Therefore, we have proved the first part. For the second part, we have for all ¢ > 0, Apin (K (1)) > %
Aot

and it follows from Lemma 3] that: |w,(t) —w,(0)|| < R’ for all 7 € [m] and | X —U(t)||3 < exp(—=5) || X —
U

Now, we bound || X — U(0)|  to upper bound R'.

|
Claim 4.1. For any § € (0,1), then || X — U(O)H2F < 22 with probability at least 1 — 6.

13



Proof. We prove this using Markov’s inequality. We use the independence between A(0) and W (0) to derive
expressions for the expectation. In this proof, the expectations are evaluated over W (0) and A(0).

B[IX ~ O] = IXI3 + — Bl A6V (0) X3

n+ %E[uace(gﬁ(ﬂw(0))A(0)¢(W(O)TX]

n+ %trace(IE[qb(XTW(O))A(O)TA(O)QS(W(O)TX])

- %trace(E[gb(XTW(0))¢(W(O)TX])

=n+ Y Eylp(w'z;)’
i=1
9 3n
=n+nE.cn) 271z > 0]] = o

where in the fourth step we use E[A(0)T A(0)] = dI, and in the last step we use the independence of the
columns of W (0). Using Markov, we get:

2n
IX U7 < 5
with probability at least 1 — 4. |
Proof of Theorem[{.1] If the following condition holds

o =T g2d

then Lemma (A3 follows. Using the condition with the bound || X — U(0)||» < y/2n/d in Claim Bl we

obtain m = Q ("iff;i" ) This bound dominates the order of m required for the concentration of K (0) in the
0

Corollary BTl and therefore Theorem E.1] follows. |

4.2 Gradient descent

The above result for gradient flow can be viewed as a convergence rate for gradient descent in the weakly-
trained regime with infinitesimally small step size. We now derive a convergence rate for gradient descent
with finite step sizes.

Theorem 4.2. Suppose Assumptions [l and[Q hold. The initial weights are independently drawn such that
5 74
wy ~ N(0,1) and a, ~ Unif({£1}9) for all € [m]. If m > C242= for some large enough constant C,

263
then with probability at least 1 — § the gradient descent on W with step size n = G(né\gn ),
nA\o g
2 2
Ix - U@l < (1- 22 1x - vl (4.9

fork=0,1,...

We will prove Theorem by induction. The base case when k = 0 is trivially true. Assume Eq. (@3]
holds for k' = 0,1, ..., k, then we show it holds for ¥’ = k+1. To this end, we first prove ||w,(k—+ 1) —w,(0)||
is small enough; then we use that property to bound || X — U(k + 1)”%

14



Lemma 4.5. If [@3) holds for k' =0,1,...k, then we have for all v € [m],

AdVIlIX —UO)llp &
[[wr (k+1) —w, (0)]] < NGEY E£R.

Proof. We use the expression of the gradient in ([€2]), which is:
Vo LW L by (0T > Ofia] (2 — i (k)
"X
1
= ——X,(;)(X -Uk)"a
Then, the difference of the weight vector w, is:

Jwn (k+1) = w, (0)]) = n Z vwruwT(k’))H
k=0

(X ~UK) " a,

HXHZHV (X -U(k ))HFHG’T‘H

IN

Ve o\ *'/2
"WWZ_O(I_TO) IX -UOl5

)\n - 77)\0 K'/2
< m|X—U<o>|FMZ_O(1—§)

1
= \/—HX u(o )HFW
_ AdVA[IX — U(0)]
N !

where the third step and the fourth step follow from the facts that ||)~(T(k’)|\ < || X]|| = v, and |a,| = Vd.
The last step follows because Y .° (1 — nho/2)"? < 7747‘10.

ﬂ

aa

|
Now, let us derive the form of X — U(k + 1). First, we compute the difference of the prediction between

two consecutive steps, similar to deriving dul(t) For each i € [n], we have

ui(k+1) —u;(k) = ! Z ar (¢(wr(k + 1) 2;) — p(w, (k) "))

vVmd Pt

L i “ <¢> (o) = 0¥, OV () 1) = 6, () (4.10)

We split the right hand side into two parts: v; ; represents the terms that the activation pattern does not
change and vs ; represents the remaining term that pattern may change. Formally speaking, for each i € [n],

we define
S; ={r €m]: Lw,(k + 1)Txi >0] = ]l[wr(k)T:vi > 0]}, and Sil = [m]\S;.

15



Then, we can formally define v, ; and vy ; as follows:

M¢3;%§2;w<¢<@M@—WVWLWKM»T%)—¢@M@T%0,

e 5 (0 (1009~ 0¥ LOVOD) ) = 6, ()T
V2§ = —F/— ar Wy - W, Ty | — Wy Ty .
> vmd oot 7
We write v; = (UL, ’UIQ, e ,vIn)T and do the same for va, so

vec(U(k+ 1) = U(k)) = v1 + va.

In order to analyze v; € R", we define K and K+ € R"4*"d a5 follows:
1 m
K(k);; = p” ijxj]l[wT(k)Txi > 0,w, (k) z; > 0lara, ,

1
K(k)i; = ~ > ) zilwe(k) 2 > 0,w. (k) x; > Olaa, .

res;-

Next, we write ¢(z) = z1[z > 0] to make use the definition of S; and expand the form of V,, L(W (k)):

V1, = \/% Z ar( - anTL(W(k)))Txi]l[wr(k)—raci > 0]
res;
= Z:v xj Z [w,.(k) "2 > 0,w,.(k) T2z; > 0]ara, (x; —uj)

gi K5 (k) = K5 (0)) 5 = uy),
Then, we can write vy as:
v = g(K(k) — KL (k))vee(X — U(K)), (4.11)
and expand | X — U(k + 1)|%:
IX = Uk + 1) = [[vee(X = Uk + 1))
= |vee(X — U(k)) — vec(U(k + 1) — U (k)|

= | X — Uk)||% — 2vec(X — U(K)) Tvec(U(k + 1) — U(K))
+ UG +1) = U
We can further expand the second term above using (B.19) as below:

vec(X — U(k)) "vec(U(k +1) — U(k))
= vec(X —U(K)) " (v1 + v2)
= vec(X — U(k)) Tvy + vec(X — U(K)) "vg
= Evec(X —U(k)" K (k)vee(X —U(k)) — gvec(X —~Uk)"K(k)yH(X —U(k))

+ vee(X — U(k)) Tvy

16



We define and bound the following quantities and bound them in Claims [B.], [B.2] [B.3] and [B.4l

Cr = — Dlvec(X — U)K (k)vec(X ~ U(K),

Cs = Zvee(X — U(k)TK ()" (X ~ U(K)),
C3 = —2vec(X — U(k)) vy,
Ca= Uk +1) = UKl
Proof of Theorem[{.3 We are now ready to prove the induction hypothesis. What we need to is to prove

N0\
IX = U@)E < (0= 581X = U7

holds for k¥’ = k + 1 with probability at least 1 — §. In fact,
IX —U(k+ )5 = |X = UE)|[7 + Cr + Co+ Cs + Cy

A
<X —UE)|% <1 - "70 + 8nnR + 8ynR + 772n/\n) :

with probability at least 1 — § where the last step follows from Claim [B.1l [B.2] [B.3], and [B.4l

Choice of 7 and R. We need to choose 17 and R such that

A A
(1- %0 + 8R4+ SR+ n*n\,) < 1 — g—;. (4.12)
If we set n = 4n’\d‘3n and R = ﬁ, we have
nAo 2 Ao
= < _— < T .
8nn R + 8nnR = 16mnR < 1 and 7nnA\, < 1d
Finally,
2 nAo 2
Ix = 0t + Dl < (1= 50 ) 1 - Ul

holds with probability at least 1 — § if 2nexp(—mR) < §/3.

Lower bound on the level of over-parameterization m. We require for any § € (0,1) that

o AR U0 ho b
VmAo 64nd’ 2n3d |’

where the first bound on R comes from the gradient descent whereas the second is required in Lemma
By Claim @1l that || X — U(0)|| < /22 with probability at least 1 — 4, then we require

<R—min{

S n®\, d*

for a sufficiently large constant C' > 0 so that the descent holds with probability 1 — 6.

We give proofs for Claims [B.1] [B:2] [B.3] and [B:4 in Appendix Bl
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5 Jointly-trained Autoencoders

In the previous section, we analyzed the gradient dynamics of a two-layer autoencoder under the weakly-
trained regime. We now analyze the jointly-trained regime where the loss is optimized over both sets of
layer weights. For consistency of our presentation, we reuse some key notations in this section; for example,
K(t),U(t) have the same interpretation as before but possess a different closed form.

5.1 Gradient flow

The loss function we consider for this jointly-trained regime is the same:
)= 23l — Ao (5.1)
24 l md v .
The difference is that the optimization is now taken over both weights W and A. To make the comparison
easier, the matrices W and A are randomly initialized in the same way such that
w;;(0) ~ N(0,1), ai;(0) ~ Unif({—1,1})

are drawn independently for each pair (¢,j). W and A are then updated using gradient descent with step
size n:

W(k+1)=W(k)—nVwL(W(k),Ak)), k=0,1,... (5.2)

A(k+1) = A(k) —nVAL(W (k), A(k)), k=0,1,... (5.3)

Similar to the previous case, we derive the gradients of L(W, A) with respect the column w, of W and a, of
A. The gradient V., L(W, A) is the same in (£2]) in Section 1] whereas V,, L(W, A) is standard:

Vo, LW, A) = \/—_ i 1wz > 0xsa, (25 — ui), (5.4)
Va.L(W,A) = \/% Z d(w, ) (x5 — uy). (5.5)

i=1

Consider two ODEs, one for each weight vector over the continuous time ¢:

dw,(t) _

L2 =V, L(W(8), AW®)), (5.6)
d‘zt(t) = Vo, L(W(t), A(t)). (5.7)

Using (&4), (&3), (&8) and (57), the continuous-time dynamics of the predicted output, w;(t), for sample

x; is given by:
R T
— arp(w, x;
t ( d r=1 (b( )>

T dw
<Jwr(a7«¢(wr v

dui (t)
dt

Q-|Q

"t T (ard(w] xi))d;tr>

NERE

r=1

(1wl 2; > 0)a, 25(—Vu, LW, A)) + ¢(w, 2:)(—Va, L(W, A)))

ﬂ
Il
=

I
~ 8- 3
NE

= Z lwlz; > 0,wlz; > 0]z zjara] + ¢(w, 2;)d(w, z;)I) (x; — uj).
j=1 7":1

5\
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In these expresssions, we skip the dependence of the weight vectors on time ¢ and simply write them as w,
and a,. Vectorizing W) e get to the key equation that characterizes the dynamics of U(t):

dt
w = (G0 + H ) vee(x ~U(). (5.8)

In the above equation, G(t) is a size-nd x nd matrix of the form:

Glt) = % zm: X0 X () ® an(t)arn(t)T, (5.9)
where X,.(t) = []l[wr t)T21 > 0)xy,.. ., Lwe(t) Tz, > O]xn}, while H(t) is a size-nd X nd matrix:
H(t) = 3 (X T (D), () X) @ 1 (5.10)

Let us emphasize again that G(t) is precisely the kernel that governs the dynamics for the weakly-trained
case. On the other hand, H(t) is a Kronecker form of the Hessian of the loss function derived with respect
to A, using the features produced at the output of the ReLLU activations.
As shown in Section Bl assuming randomness and independence of W(0) and A(0), we can prove that
H(0) and G(0) converge to the same NTK as m — oco. More specifically, we have
G =Ew(0),4(0)[G(0)]
= Eu(0),a(0)[X (0) " X(0) @ a(0)a(0) ']
=E,[X X|® 1. (5.11)

and

H®> = Eyw/(0),a(0)[H(0)]
= Eu(0),a(0)[¢(X " w(0))p(w(0) T X) @ 1]
=E,[X X|® 1. (5.12)
Therefore, the neural tangent kernel for the jointly-trained autoencoder is given by:
K™ =2E,[X"X|® I

Denote the time-dependent kernel K (t) = G(¢) + H(t). Since both G(¢) and H(t) are positive semi-definite,
we only focus on H () for reasons that will become clear shortly.

Since G(t) is also positive definite with high probability (Section [I1]), the flow convergence can be also
boosted by the positive definiteness of G*°. By Assumption [2]

/\min(Koo) > )\min(Hoo) = )\min(Ew[XTjZ]) = )\0 > 0.

Since G(0) is positive semi-definite, in order to bound the minimum eigenvalue of K(0), all we need is to
bound that of H(0). Importantly, we observe that the smoothness of the kernel H(¢) is much better as
a function of the deviation of the weights from the initialization. This allows the weights to change with
a larger amount than merely using G(t¢), and enables us to significantly reduce the number of parameters
required for the gradient to reach a global optimum.

Our main result for gradient flow of the jointly-trained autoencoder is given by:

Theorem 5.1 (Linear convergence of gradient flow, jointly-trained regime). Suppose Assumptions[dl and[3
hold. The initial weights are independently drawn such that w, ~ N(0,I) and a, ~ Unif({—1,1}%) for all

3
re€[m]. If m> Cﬁ\igzd for some large enough constant C, then with probability at least 1 — 9,
0

Aot
1X UM} < exp(==5) X - UO)]-
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Remark 5.1. We initialize the second-layer weights A with independent Rademacher entries. This is for
convenience of analysis because such A has constant-norm columns. However, similar results should easily
follow for initialization with more practical schemes (for example, i.i.d. Gaussians).

We will first state and prove a few auxiliary results in Lemmas [5.1] (.2 and and then use them to
prove Theorem [5.7]

Lemma 5.1. For any § € (0, ﬁ), if m > C’max(n’d)k;\‘zlogz("d/ls) for some large enough constant C, then
n 0
with probability at least 1 —1/(2nd)?1°8"% —m§, one obtains ||H(0) — H*®|| < Xo/4 and Amin(H(0)) > 3o /4

The proof of this Lemma is deferred to Appendix
Lemma 5.2. Suppose |W(t) — W(0)||p < Rw. Then,

[H(t) = HO)l < 22 QIWO)] + Ru)Rus

Particularly, if 2=(2||[W(0)|| + Ry)Rw < 22, then |H(t) — H(0)|| < 22. Therefore, Amin(K(t) > 22 if
Amin(H(0)) > 2.

Remark 5.2. Let us compare with Lemma Note that compared with that bound, O(n?dR,,) on the
kernel perturbation, here the spectral norm bound on H(t) — H(0) is significantly better in two ways:

(i) the bound scales with 1/y/m, which later determines the over-parameterization and

(ii) the movement is now characterized by the total |W (t)—W (0)|| . This is possible due to the smoothness
of the ReLU activation, which is the reason why we focus on H(t) instead of G(t).

Proof. We apply the triangle inequality and use the Lipschitz property of the rectified linear unit to bound
the difference. Recall that

H(t) = 3 60X T (0)8(w, (1) X) = —6(X W)W (1) X)
Then, we can upper bound the perturbation as follows:
1 (£) = H(0)]| < %||¢>(XTW(t>>¢<W<t>TX> — o(XTW(0)(W(0)" X)|

< —lo(XTWO)|le(W(#)T X) = o(W(0) " X)|

3~

Lo TW() — (X TWO)]6(W(0) X))

LIUXIE W@+ WO W) ~ WO

IA
> 3

< = 2[WO) + [W(t) = W(O)l) [W(E) — W(0)ll

|> 3

< - 2IW )| + Ruw)AnRew-
In the third step, we use the fact that the ReLU function is 1-Lipschitz and ||¢(X TW ()| < || X||||W (t)]|.
The last step follows by |[W (t) — W(0)||p < Ru-

Using the condition and Weyl’s inequality, one can easily show that Apin(K(t)) > Amin(H(t)) > Ao/2.

|

We haved proved that as long as the weight matrix W (t) do not change much over ¢, the minimum
eigenvalue of K (t) stays positive. Next, we show that this implies the exponential decay of the loss with
iteration, and give a condition under which the weights do not change much.

20



Lemma 5.3. Fizt > 0. Suppose Amin(K(s)) > 22 for all 0 < s <t. Then

1% ~ U2 < exp(-222) X ~ U©).

Proof. We have Ain(K(s)) > 22, then

is (Ivee(X = U(s))II3) = ~2vee(X — U(s))TK;t) vee(X — U(s))

< —%Amin(K(s))Hvec(X —Us)I3
< 20X —U)E, (5.13)

since Amin(H(s)) > 7" Therefore,
Aos
1X = U5 = Ivee(X = U(s))* < exp( =25 ) [vee(X = UO)]F

/\()S 2

< - - )

< exp(-222) X~ UO0);
|

Lemma 5.4. Fiz t > 0. Suppose Amin(K(s)) > 22 and ||A(s) — A(0)||z < Ry for all 0 < s < t. For all

r € [m], we have
W) = W), < QM('A(O”\/%}};)”X —UOle » g

Proof. For s € [0,t), we have

iy (s) =~V LW (s), A(s))
;d Z 1wl z; >0 {EZCLT(S)T(QH —u;i(s))
__ 5 —U(s))) a,(s

Then, one can bound the entire weight matrix as follows:

d
v < Bhjo-veraol,
< 221X~ U(9)] A)|
VEAO +R) (s
< e e (- 57 JIX - VOl
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In the second step, we use the fact |CD| < ||C| z||D|| for any matrices C, D, and [ X = An. The last
step follows from || A(s)|| < ||A(0)]| + R, and Lemma Using the same continuity, we have

¢

d
< —
W) - W)l < Jim [ S|
_VRIA©)] + Ra)exp ( %)X = U(0)] ¢
< lim ds
t'—=t Jo m
_ 2/ AO) + RIX = U0 / oo
Vmd 5t 2d
2V (| AQO)| + Ba) X ~ UO)llr & p
- \/m)\o v
|
Lemma 5.5. Fiz t > 0. Suppose Amin(K(s)) > 22 and |[W(s) — W(0)|| z < Ry for all 0 < s < t, then for
r=12,....,m
A 4] < YT+ Ru)|X = U0 5 g
F= \/m)\o @

Proof. For s € [0,t), we use the gradient derived in (5.5]) and (5.7) to obtain:

d
d_tsaT(S) Va, L(W(s), A(s))
_ ﬁ S 6w @) e — wi(s))
= (X = U)X Ty (5)
Then, one can write
d A — | X-U XTw
HF o - Hm< ~ U W)
< j%nx U)W s
V(W O)]] + Ru) Nos
< T e (=57 )IX = U0,

where we use || X|| < VA, [W(s)|| < |[W(0)|| + Ry. The last step follows from Lemma (53 Now, we
integrate out s:

: VR IWO) + R exp (=2 ) [1X — U)]
14 - 40)1p < [ | F-aew)| < [ ﬁ( i) " ds
2WAL(WO) + R)IX ~UOp _ o,
- \/ﬁ)\o @’

which is what we need.
Lemma 5.6. If R, < R, and Rl < R,, then for all t > 0, we have
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(i) Amin(K (1)) > % and for all v € [m], [|W(t) = W(0)||p < R, [[A(t) = AO)]|p < R

2

(ii) If (i) holds, then ||X — U(t)|% < exp(—%)HX — U0
Proof. Suppose on the contrary that
A
T = {t > 0 Ain (K (£)) < 52 or [W(H) = W(O0)] o > Rl or [[A(£) = A(0)] > R;} . (5.14)

is not an empty set. Therefore, to £ inf 7 exists. Using the same contuinity argument as in Lemma [3]
one can verify that tog > 0. First, if Apnin (K (tg)) < %, then by Lemma (2] |W (to) — W(0)||r > Ry > R.,,
which is a contradiction because it violates the minimality of ¢g.

The other two cases are similar, so we will prove one of them. If it holds true that

W (t) = W)y > R,

The definitions of ¢y and 7 implies that for any s € [0,9), Amin(K(s)) > )‘—2" and [|A(s) — A(0)|| < R..
Then, Lemma [5.4] leads to:
W (to) = W(0)llp < Ry,

which is a contradiction. Therefore, we have finish the proof.
[

Proof of Theorem [El. With the results, we can can prove the Theorem. From Lemma 5.6 if R, < R,, and
R/ < R,, then

1%~ U(0)13 < exp(~22) X ~U(O)]3.

We only need the conditions R], = R/, < R,, = R, to satisfy for this to work. The conditions are

An Mo
—(2 w w < —_
IV O+ Ru)Rw < -

and Ry < R, = 2V ([ AQO)] + Bo)| X ~ U O]l

NCoT

Note that || X —U(0) H% < 3n/26 with probability at least 1—4. Also, using a standard bound on sub-Gaussian
matrices, we have ||W(0)|| < 2v/m + v/d and ||A(0)|| < 2y/m + V/d with probability at least 1 — 2 exp(—m).
3

Then if we have the order of m > (2’1;‘;‘ ) Therefore, we finished the proof for the gradient flow Theorem.
0
|

5.2 Gradient descent

As above, we will now appropriately discretize the gradient flow to obtain a convergence result for gradient
descent with finite step size for the jointly-trained regime.

Theorem 5.2. Suppose Assumptions[dl and[Q hold. At initialization, suppose the weights are independently
3
drawn from w, ~ N(0,I) and a, ~ Unif({—1,1}%) for all v € [m]. If m > C’;\f;g;j for some large enough

constrant C, then with probability at least 1 — § the gradient descent on W with step size n = ©( Ao ),

nin

_ o

2
— <
1X - Uk < 0 -2

HIX = T(O)]- (5.15)
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We will prove by induction. The base case when k& = 0 is trivially true. Assume holds for & =
0,1,...,k and we want to show (B.ID) for &' = k + 1. First, we prove that |[W(k + 1) — W(0)||» and
|A(k + 1) — A(0)]|  are small enough, and we then use that to bound || X — U(k + 1)||§,

In this section, we define and assume that

AV ([AO)][ + R X —UO)llp & 5 AV (W (O)[| + Ru) [ X —U(O)llp & 5
=R, and R, < = R,.
\/m/\o \/m/\o
First, we show the following auxiliary lemma.

Lemma 5.7. If the condition (BI8) holds for k' =0,1,...k, then we have

R, <

[W(k+1)=W(0O)lp < R,, and [|A(k+1) = A0)]» < R,
with probability at least 1 — & for any 6 € (0,1).

Proof. We prove this by induction. Clearly, both hold when ¥’ = 0. Assuming that both hold for k¥’ < k.
We will prove both hold for k&' = &k + 1.
We use the expression of the gradients over w, and a, in (54) and (E3):

]
Vo, LW (K), A(k)) = = ——=1[w, (k)" z; > Olzia, (k) " (2 — ua(k))
; vmd
1 -~
= —er(k)(X - U(k))ar(k),
Ve LOV(R) AGK) = = 3=~ (o, (0) ) o ()
L o Ty

Then, the difference of the weight matrix W is:

W+ 1) - WOl < 15l va (X — UE D] (1A + Ra)

n\/mnAanH + Ra) Z (1 _ ’Y_Ao) 1X —U(0)||,
k'=0

< Jm 2d

S nmum&t%n ) 1x —p)l, 30 (1- 1)
k'=0

= Rl R gy, 22

_ WDLAO)] + R)IX - UO)p _

NeoY

where the third step and fourth step follow from || X, (k')|| < ||X|| = v/A, and the induction hypothesis
[JAED] < |A(0)|| + Rq. The last step follows from

S /22 < 2L
i=0 1o
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Similarly, we bound the difference of the weight matrix A between time k + 1 and 0:

k
Ak +1) = A(O)llp = n Z \/—— (X — U)X TW(K))

F

\/—ZIIX UE) W (&)l

( POV X~ U)Wl + Ru)

\/_k/
_ VAol + R)IX - Ul 4
vm NAo
Wl + RIX - VO,
VmAo a

where the third step and fourth step follow from the facts that ||¢(X "W (K))|| < || X|[|W (k)| and || X|| =
VAn, and [[W (K[ < [[W(0)]] + Ru.
We have therefore shown that |[W (k") — w(0)||r < R, and [[A(k") — A(0)|| < R;, for k' =k + 1. |
Now, we expand || X — U(k + 1)||; in terms of the step k. Recall the update rule in (52)) and (B3] that

W(k+1) = W(k) — nVw LW (k), A(k)), k=0,1,... (5.16)
A(k+1) = A(k) — nVAL(W (k), A(k)), k=0,1,... (5.17)

where the gradients is given above. Next, we compute the difference of the prediction between two consecutive
steps, a discrete version of d"dit(t)

. For each i € [n], we have

wilk +1) — (k) = ¢——Z ar (ke + D)o, (k +1)Ta7) = an (k)b (wn (k) 2,)
r=1

m

= ﬁ >~ ((artk) =090, )6 ((wr (k) = 1V, L) @) = ar()é(w, () Tz)) . (5.18)

r=1

For a particular r, if the activation pattern does not change, we can write the inside term as:
T
(QT(k) - nvarL)(b ((wr(k) - nver) I’L) - ar(k)¢(wr (k)sz)
= (—nar(k) (ver)T - n(vaTL)wr(k)T + nQ(V L)(Vw,L) ) [wr(k)Txi > 0],

where the first part corresponds to kernel G(t) and the second part corresponds to the H(t) shown up in the
gradient flow analysis. With this intuition, we split the right hand side into two parts. v;; represents the
terms that the pattern does not change and vs ; represents the remaining term that pattern may changes.

For each i € [n], we define S; = {r € [m] : Lfw,(k +1)T2; > 0] = Ljw, (k) "2; > 0], and Si* = [m]\S;.
Then, we write vy ; and vy ; as follows:

R \/— > (ar(k+ Do(we(k+ 1) @) = ap(k)p(wr (k) "21)) ,

rES;
v2i 2 2 S (ap(k + Dp(wn(h + 1) 1) — ar (), (k) T20))
md resS;-
We further write v, = (vlTJ, vlT)2, e ,vlTn)T and do the same for vo. Hence, we write

vec(U(k+1) = U(k)) = v1 + va.
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In order to analyze v; € R™, we provide definition of G, G+ € R*¥*"d and H, H+ € Rndxnd,
1 m
G(k)i; = — Zx:xj]l[wr(k)—rxi > 0,w, (k)" z; > Olay(t)ar ()",

Gk = % Z x;rxj]l[wr(k)—r:zi > O,wr(kz)—ra:j > O]ar(t)ar(t)—r,

3
res;t
H(k)ij = — Zsb wy(t d(w,(t) 21,
H(k)i_‘] = — Z Qb wr ( r(t)T{Ej)I.
7"€SL

Using the fact that ¢(z) = z1[z > 0] and the definition of S;, we expand the forms of the gradients in (.4l
and and get:

v = \/_ Z na,(k VUJTL)T xi]l[wr(k)—r:zi > 0]

resS;
Z (Va, D)w, (k) "2 1w, (k) Tz; > 0]
TGS
1 2 T T
+ — N (Va, L) (VL) z;1we(k) x; >0
wm§;< (e L) T, (F) Ty 2 0

"’I n
= 23 Gy = GR) + HR)iy — HR)) (2 =) + v
where v3 will be treated as a perturbation:

V3, = \/_Z Va L)V, L) 21w, (k) Tz > 0].

res;

Then, we can write vy as:

(K(k) — Kt (k))vec(X — U(k)) + vs, (5.19)

in which K (k) = G(k) + H(k) — the discrete NTK kernel and K+ (k) = H*(k) + G+ (k). Lastly, we come
to the main prediction dynamics in discrete time for vec(U(k + 1) — U(k)) as:

vee(U(k + 1) — U(k)) = L(K (k) — K+ (k))vee(X — U(k) + v + vs.
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Using this equation, we can rewrite | X — U(k + 1)||3 in terms of X — U(k) as follows:

IX = Uk + 1|7 = [lvee(X = U(k + 1))

= ||[vec(X — U (k) — vec(U(k + 1) = U (k)| 7

= | X = Uk)||% = 2vec(X — U(k)) Tvec(U(k + 1) — U(K))
+Uk+1) - UE)

=X -U®&)|% - %vec(x —U(k)T K (k)vee(X — U(k)
+ %vec(x —U(k))"K(k)tvec(X — U(k)
- %Tnvec(X —U(k)) " (va + v3)
+ Uk +1) = UE)|-

We define and upper bound each of the following terms
C, = —%VeC(X — U(k))T K (k)vece(X — U(k)),
Co = %VeC(X — U (k)" K (k)" vee(X — U(k)),
Oy = —%vec(X —U(k)) vy,
Cy = —%vec(X —U(k)) s,
Cs = |U(k+1) — UK

Notice that C; can be upper bounded in terms of Apin (K (k)) > Amin(H (k)), which is ensured as long as the
movement in the weight is sufficiently small (shown in Lemmal[5.7) Co can be upper bounded also using the
kernel with bound on its spectral norm.

Proof of Theorem [5.3. We will prove Theorem [5.2] by induction. The base case when k = 0 is trivially true.
Assume that the claim holds for ¥’ = 0,1,...,k and we want to show that (5.I5]) also holds for k' = k + 1.
For k' = k+ 1, we have

IX = Uk + )7 = IX = UE)lIF +C1 +Ca+ Cs+Ca+ Cs

Now, we invoke the bound for each of these terms from Claims [C.4] [C.H] [C.6] and in Appendix
and Lemma5.7l Then, we want to choose n and R,, such that

A 8nAn  160%V/n,  8n%\/nA2 640> \2 A
( 170 | Zon g WV 77dn"||X—U(0)||F+#>S<1—n—O>- (5.20)

1120
d + d d 2d

If we set n = ﬁ(’/\n and use | X —U(0)||» < Cy/n, we have the two dominating terms are

8nAn

o o 8n2\/n>\%llf—U(0)llF < n8_>;_

This implies that

nA
1% ~ UG+ 1)1 < (1= 20)1x — UGk .
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Lower bound on m. We require for any § € (0,1) that

A

n
m

A
AW (0)[| + Rw)Ruw < IO

_ WA (A0 + R)IX = UO)
= \/E)\o

and

2exp(—m) <46
where the first bound on R,, comes from the result on gradient descent and the condition in Lemma [5.2]
whereas the second bound is required by the above Claims. By Claim B that || X — U(0)||, < /22 for

arbitrary ¢ € (0,1), then we require
nd\3
A YTE
for a sufficiently large constant C' > 0 so that the claim holds with probability 1 — 4.

m

6 Weight-tied Autoencoders

We conclude with the case of training two-layer autoencoders whose weights are shared (i.e., A = W).
This is a common architectural choice in practice, and indeed previous theoretical analysis for autoen-
coders [Rangamani et all, [2017, INguyen et al), 12019, [Li and Phan-Minl, 2019] have focused on this setting.
We will show that somewhat surprisingly, allowing the network to be over-parameterized in this setting leads
to certain degeneracies. First, we prove:

Lemma 6.1. Let 2 be any fized sample. The weight W is randomly initialized such that w, ~ N(0,02%I)
independently for r =1,2,...,m, then

(2d + 3)||o2z|?

2
1 T 2 _ 02 2
Eumavtoarnnlle = WD) = (5 = 1) ol + ZE

Particularly, when ||z|]| =1, 02 = 2, then

1 2d + 3
B, ~A(0,020) wr[ |7 — EW(b(WTI)HQ] =—.

For an arbitrary small € > 0, the expected reconstruction loss is at most € if m > Q(d/e).

Remark 6.1. This Lemma has a few interesting implications. First, when 02 = 2 , then

2d + 3)||z|?
B, ~anr0,20)wrlllT — u|\2] = w,

m
which does not exceed € if m > 3d/e for € > 0. Provided that the data samples are normalized, if m is
sufficiently large, even with random initialization the reconstruction loss is very close to zero without any
need for training. Therefore, mere over-parameterization already gets us to near-zero loss; the autoencoder
mapping %W(b(WTx) ~ z for any unit-norm z. It suggests that training of weight-tied autoencoders under
high levels of over-parameterization may be degenerated.
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Proof. We will use E,,, as a shorthand for E,, ar(0,021). We expand the reconstruction loss:

1 1 1\
o= S WoW T =l = ZWoWTa)* = fla = =3 élw @y |

= el - 23 et ol 4 Y sl ew] . (6)
r=1

r,s€[m]

Because ¢ is ReLU and the distribution of w, is symmetric, we have:

By [o(w" )] = gEufwwlr = 5,

since E,[ww'] = I. Then, by the independence of the columns in W (more details or split up, one more

step),

m2

2 — 1 2|2
Ewr[nx—unﬂ:nxnﬂaz% 1oy T g e s

r,s€[m], r;és
2
= (1- )2l + Z— || *z|” + E [p(w” 2)?[[w]]”]. (6.2)
Now, we compute the last term:
d+2 2
Ey[¢(w”a)?||w|] = —5— ozl
Due to the normalization ||z|| = 1, we can also write 2w = uz + v such that 27v = 0, then u = (w,z) ~

N(0,1) and v ~ N(0,I — x2T) are conditionally independent given z. Note that since the conditional
distribution of u is unchanged with respect to x, this implies that u is independent of z; as a result, v and
v are (unconditionally) independent.

Also, denote oy = E.pr(0,1)[291(2 > 0)] for the exact value . Using Stein’s Lemma, we can compute the
exact values: o = Ey,[ul(u > 0)] = E. n0,1)[z1(z > 0)] = \/%7, B=Eu[u’lu>0)] =1 v=E,[u'l(u>
0)] = 2, which are all positive. Write ¢(z) = max(0,z) = 1(z > 0)z, and

w[L((w, z) > 0)(w, z)*|[w]|”]

Eynn(o,n)[0(w” 2)?|[w]*] = Eu|

Ey[L(u = 0)u®(u® + [|Jv]*)] (o]l = 1)
Eu

_d+2

= 1(u > 0)u'] + Eyp[1(u > 0)u?Ey[||v]|*] (cond. independence of u and v.)
2
. 6.3
Changing variables by scaling the variance:
Euwnn (0,020 9w @) [[w]*] = 6" Bumnio,n[$(w” @) |Jw])*] = (2d + 4) [0z,
Combining with (6.2):
21 _ (9% ) 2 24+ 3)llo%e
a0 [l = ul) = (5 - 1) ol + ELEAZEL (6.4
The second result directly follows from the Lemma with the specific values of ||z||, o plugged in.
|
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A Useful Facts

Lemma A.1 (Stein’s Lemma). For a random vector w € R% such that w ~ N(0,1) and function h(w) :
R? — RF is weakly differentiable with Jacobian Dyh, we have

Ewmno,n [wh(w) "] = Eyano,n [(Dwh)T].

Lemma A.2. Given two vectors z,y € R?

Proof. A direct application of the Stein’s lemma (Lemma [A]). Denote h(w) = 1[{w,2z®) > 0, (w, () >
0w, here k = d. and the derivative of h(w) with respect to w is Dy,h = 1[{(w, 2*) )

Ewnn(o,1) {11[<w7w> >0, (w,y) > O]wa]] = Euono.n [wh(w)']

= Ew~no,1) [(th)w
= IEww.’\/(O,I) []lev ‘T> =0, <w7 y> 2 OH I.

|
Lemma A.3. Given two vectors x,y € RY
EwNN(OJ) ]l[<w7 ‘T> >0, <w7 y> > 0]”w”2] = dEwNN(OJ) []l[(w,x> >0, <w7y> > O]]
Proof. Write ||w| = Zle w? where w; is the it"-entry of w. Then use the Stein’s lemma with the indepen-
dence of those entries in w, we have the result. |
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Lemma A.4. Denote S; = {r € [m] : 1[w,(k +1)Ta; > 0] = 1w, (k) x; > 0], and S+ = [m]\S;. If
|wy(k) —w,(0)|| < R, then

Z]ITES’J' ] <4mR
r=1

with probability at least 1 — nexp(—mR).
This result is borrowed from the proof of [Song and Yang, 2019, Claim 4.10].

B Weakly-trained Autoencoders
B.1 Concentration of K(0) — Proof of Lemma [4.7]

Proof. Recall that K(0) = > 1)~( (0)TX,(0) ® a,a,) . In this proof, we omit the argument ¢ = 0 in
X,.(0), and simply write X, for clarity.

Consider the random matrix Z, = XTX ® ara; and Z, = E, [XTX]® 1. Note that Z, is positive
semi-definite. One can easily show two facts

12| = HXTTXT ® ara:” = ||X’ITXT||||GTGTT” = ||arl|2HXrTXT” < dAy,
in which we use ||a,||* = d; and

1X, X = e 1Xb]% < e IIZb zil? = X TX] = A (B.1)

Similarly, || Z,|| < A\, and hence ||Z, — Z,|| < (d + 1)A,. Moreover,
Ewr,ar[(zr - ZT)2] = Ewr,ar[(zr - ZT)(ZT - ZT)T]
= Ewmw [ZTZ;F] - Zf
= EwT,aT[(X:XTF ® HGTH2GT@:] — (Ew [)?TX])2 QI
< dE,, [(X)X,)}] @1

By the above argument, [|E,, [(X,” X,)2]|| < A2, so | . E((Z, — Z,)?)|| < mdA2.
From matrix Bernstein’s inequality [Theorem 1.4 of [Tropp, 2012],

. €2/2
P [[lmK(0) — mK>| > ¢ < ndexp (_ (d+ 1)\ ej?) + mdX2 ) '

Since the second term in the denominator of the exponent dominates (Ag < A,,), we get

A2 dlog(nd/d)

m>C )\3

where we pick € = mAo/4. Therefore,
[K(0) — K™ < Ao /4

with probability at least 1 — § for any § € (0,1). By Weyl’s inequality, we have with the same probability:

Amin (K (0)) > 3X\o/4.
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B.2 Proof of supporting claims

To prove the bounds in Claims [B] [B:2) B3] and [B4] we use the bound ||w,(k + 1) — w,.(0)|] < R’ for all
r € [m] in Lemma[L5] In what follows, we assume R’ < R, which is the weight movement allowed to achieve
Lemma This assumption holds with high probility as long as m is large enough.

Claim B.1. Let Oy = —Zlvec(X — U(k)) " K (k)vec(X — U(k)). Then we have

C, < _77)\0|

2
| X = U5
with probability at least 1 — §.

Proof. Using Lemma [ we have ||w,(k) — w,(0)|| < R’ < R for all r € [m]. By Lemma [L.2] we have

15 ()~ KO)] < 22

Therefore, Amin (K (k)) > Ao/2 with probability at least 1 —J. As a result,
vee(X — U (k) TK (R)vee(X — U (k) = 22X — U(R)P = 22X ~Uh)]3,

and Cy < ")‘0 IX —-U(k )H?7 with probability at least 1 — 4.

Claim B.2. Let Cy = Zlvec(X — U(k))" K (k)“(X — U(k)). We have
Cy < 8nnR||X — U (k)|
with probability at least 1 — nexp(—mR).

Proof. All we need is to bound K (k)*. A simple upper bound is

IER)H? < S K ES 17

ij*l

2
< Z H— Z 3: xj 1w, (k T > O,wr(kz)T:z:j > O]ararT -

7“65L

d? i % Z 1w, (k) "2 > 0,w,.(k) " z; > 0]

<
ij=1 resi
2
<ty (3 ares)
4,j=1 r=1
< 16n2d*R?

with probability 1 — nexp(—mR) where the last step follows from Lemma [A4l Then, with that same
probability || K (k)*| < ||K(k)*| z < 4ndR, and

Cy = %%ec(x —U(k)"K(k)* (X —U(k))

2n
< S IE W)X = U
< SR X — U(k)|3
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Claim B.3. Let C3 = —2vec(X — U(k)) "va, then with probability at least 1 — nexp(—mR)
Cs < 8R|X — U (k)7

Proof. We have C3 < 2| X — U(k)|| p||v2||. Using the Lipschitz property of ¢, we have

i
(]

IN

(Vur OV

2
i=1 >

n m 2
T max| vaL(W(k)))TH2 3 <Z 1[r € Sf])

%Zn: <§]l[r € 5]

< —max
i=1 \r=1
2
772)‘71 2 = e 1
< FHX —U®IED (D 1res;]
=1 \r=1
772/\n 2 - 2
< FIX - UR)E Y _(4mR)
1=1
< 160X\ R¥P||1X — U(K)|| 7

< 1602 R*p?| X — U (k)|[.

with probability 1 — nexp(—mR). The sixth step we use

IV LV = | = %)X = U e

VA
< X -U(k
and the last step follows from from Lemma [A4] that >/ 1[r € S| < 4mR with probability at least
1 — nexp(—mR). Substitute the bound into Cs, then we finish the proof. [ ]

Claim B.4. Let Cy = |U(k + 1) — U(k)||%. Then we have
Co < *ndnl| X = U (k)|[7-

Proof. Previously in Lemma [4.5] we proved that

IV, LOVE] = =5 %o (0 = Uk
< 2o x v



Expand the form of U(k + 1) — U(k) and use the Lipschitz of ReLU to get

C4 =" |lui(k+1) — u; (k)|
=1

3 (ot + 17 — )|

=1 r=1

n m 2
<Py (z]\vm(vv(k))]\)

=1 r=1

n m 2
<y i( Vv U )

rlm\& r

= 1P| X — U(R)||%
< 2| X = Uk)||5

Therefore, we finish the proof. |

C Jointly-trained Autoencoders

C.1 Concentration of H(0)

We re-state and prove the concentration of H(0) in Lemma [B.T1

Lemma C.1. For any § € (0, 1;&%), if m > C’max(n’d)k;\‘zlog%nd/&) for some large enough constant C, then
n 0
with probability at least 1 —1/(2nd)?1°8"? —m§, one obtains |H(0) — H®|| < Xo/4 and Amin(H(0)) > 3Xo/4

Proof. Recall that

m

S 6(X Tw, (0))6(w, (0) X) @ 1, (C.1)

r=1

and H*® = Eyy(g),4(0)[H(0)]. Our goal is to show the concentration of 1" | ¢(X "w;,(0))p(w,(0) " X). Let
us use w, to mean w,(0) and denote the r*'-random matrix as

H(0) =

1
m

Zr = ¢(X Twy)p(w] X).
We use Lemma B.7 of [Zhong et all [2017] and verify the required conditions by the next results.
Claim C.1 (Condition I for H(0)). The following are true:
(i) 12l < Al

(ii). Py, [|lw,]* < 4d+/10g(2/8)] > 1 — 6 for any § € (0,1).
Proof. (i) We have
12,1l = 16X Tw,)dlw,” X[ = l6(X Twr)|* < 11X T X [lwnll* < Aflwr |,

which gives the first part (i). For the second part, we use the fact ||w,|” is a chi-squared random variable
with d degrees of freedom, and sub-exponential with sub-exponential norm 2v/d, meaning that:
2

Py, [|[lw,]> = d| > € < 2 exp(——
e | > €] < 2exp( 8d)
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For any § € (0,1) and €2 = 9dlog(2/5) > 8dlog(2/J), we have

llw,||> = d| < 3+/dlog(2/9)

with probability at least 1 — 8. Then, |jw,||> < d + 3+/dlog(2/0) < 4d\/10g(2/4) with probability at least
1—24. [ |

Claim C.2 (Condition II for H(0)). ||E[Z.Z,]|| < 3n\,.
Proof. We have

Z,2) = ¢(X Tw,)p(w,] X)p(X Tw,)p(w, X)

= ||¢(XTU’T)H2ZT = Z¢(wal)2ZT_

=1

What we need is to compute E,, [>°); ¢(w ' 2;)?Z,]. We look at (i, j)-entry and repeatedly use Stein Lemma
(in Appendix):

Elg(w, 21)*¢(w, z:)p(w, x;)] = E[F] (I + 2513, )T;]
where 7; = z;1[w, z; > 0] for each i € n. Then, we can write

B, [Z: 2] =By, [X T (n] +2XX ") X] < 3n\,.

Claim C.3 (Condition IV for H(0)). sup . =13 (E[(b" Z:b)?])!/2 < V/3dA,.
Proof. Recall Z, = ¢(X "w,)¢(w,! X), and for any unit-norm vector b € R"
(b7 2,6 = (b7 $(X Tw,)|* < [ $(X T )| < AT o |
Moreover, |lw,|” is a chi-squared random variable with d degree of freedom, so
E(llw. ) = 3d°.
Therefore, sup g, =1y (E[(bT Z,0)?])1/? < v/3dA,. [

C.2 Proof of supporting claims

In the proof of the next claims, we assume that ||W(0)| > R, > R, and [|A(0)|| > R, > R,. Also, assume
d < m. These conditions will hold with high probability when m is large enough.

Claim C.4. Let Oy = —Zlvec(X — U(k)) " K (k)vec(X — U(k)) . We have

Ao
Gy < —THX —U(K)|%-

Proof. Since we have proved that |[W (k) — W(0)||r < R),, using Lemma with the choice of R,, < R,,,
we have

IH (k) — HO)I| < -~
Moreover, G(k) is p.s.d, therefore Apmin (K (k)) > Amin(H (k) > Ao/2, and as a result,

vee(X — U (k)T K (kyvee(X —~ U(k) > 21X ~ UR)? = 21X ~ U (b2

and Oy < 20| X — U(k)||7. |
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Claim C.5. Let Cy = Zlvec(X — U(k)) " K (k)*vec(X — U(k)). We have

8nAn
d

Oy < X — Uk)|[7

with probability at least 1 — 2 exp(—m).
Proof. We need to bound the spectral norm of K (k)*, defined as K (k)* = G(k)* + H(k)*. We will bound

their spectral norms. We have

G = || = 3 ding(1lr € SHDFT X, @ 0, (o)
r=1

XY ar (k) (0) 1l € 51|
AW

IN

IN

AN | A0)]|

m

IN

where we use the assumption R, < [|A(0)||. Similarly, using R,, < ||[W(0)|| we have

IR = || 3 ding(1lr € SO T (0) (0 (1) X) @ 1]

IN

1 2 2
—IXIT W ()]

2
_ WOl
m

Moreover, using a standard boun on sub-Gaussian matrices, we have ||IW(0)|| < 2y/m + V/d and ||A(0)|| <
2y/m + v/d with probability at least 1 — 2 exp(—m). Then,

Cy = %vec(x —U(k)) " K (k)tvec(X — U(k))

< 8nAn
- d
with probability at least 1 — 2 exp(—m).
[ |
We re-state the results in the proof in Lemma[(.4land Lemmal5.5lto bound the remaining terms C3, Cy, Cs:
VAn
Vi LW (k), A » < Y22 1X — UK | AK)]. C.2
[Vw LW (k), A(k))| \/WH ()| p[|ACK)]] (C.2)
VAn
IVaL(W (k), A(k))||p < [ X = UE) W E)- (C.3)
vmd

Claim C.6. Let C3 = —Zlvec(X — U(k)) v2. We have

169° —— 2
O3 < T n)\nHX - U(k)HF

with probability at least 1 — 3 exp(—m).
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Proof. We have vec(X — U(k))Tvy < |Jo2|[| X — U(k)|| -, so we need to bound |ve||. Let D; = diag(1[1 €
S, ..., 1[m € Si]), then:

vz Z||U2z||

) ;H Vmd 5. D (o Don(h+ 1)) = an(B)on () 20) |

2

% ZHA(k + 1)Dig(W (k+ 1) 2;) — A(k)Di(W (k) ")

2

IN

il—n; zn:H(VAL)Digb(W(k w1z + HA(k)Di(VWL)TIi)

| /\

2nn
L (IVALIIW e+ DI + APV L)

21>
X = U k) 3 (I e+ PN (8] + AR )
64n\,n>
< __ii___”)( Uk )”%

with probability at least 1 —3 exp(—m). Since ||[W (k+1)|| < 2[|[W(0)] and [[A(k+1)|| < 2||A(0)||. Therefore,
with that probability

C3<—\/n)\ IX — Uk ||F

Claim C.7. Let Cy = —%Tnvec(X —U(k))Tvs. We have

Cs<—\/n/\2||X UR)IFIX ~ U0

with probability at least 1 — 2 exp(—m).

Proof. We have vec(X—U (k))"vs < [Jvs||| X—U (k)| . We want to bound ||vs]|. Let D} = diag(L1[w: (k) 2; >
0],..., Lwm (k) "z; > 0])

n
2 2
lvs)l* = llvs.qll
=1

_ ZH \/Zﬂ Z (Va,L)(V, L) 21w, (k) Tz; > O]H2
i=1 res;

ZHWAL)((VWL)D;M 2

| /\

TL
= —dHVALHFHVWLHF

ni2 9 9
T~ DR AK) W (R

1
< O x )
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with probability at least 1 — 2 exp(—m). Therefore,
877 \/ 8n%/nA\2
¢y < SV X ) < X U)X = U0l
since [| X — U (k)| < || X —U(0)|| by the induction hypothesis.

Claim C.8. Let Cs = |U(k + 1) — U(k)||%. Then we have

64772 A2

Os < — —=IIX ~U(k Iz

with probability at least 1 — 3exp(—m).
Proof. We bound this by re-iterating the proof of Claim

[0k +1) = URIE = — 4Gk + 168 (k -+ 1) X) — AR (R X))

< 2 (| @anistr e+ 00|+ jaw w0 )
- ﬂ@ﬂ (I AWk + 1)) + AR w L)

< 2n (k)| % (HW(/H— D)W (k)|* + HA(/@H“)
§64n2)\’2“||X Uk

with probability at least 1 — 3 exp(—m).
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