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Abstract

We investigate the problem of recovering jointly r-rank and s-bisparse matrices from as

few linear measurements as possible, considering arbitrary measurements as well as rank-one

measurements. In both cases, we show that m � rs ln(en/s) measurements make the recovery

possible in theory, meaning via a nonpractical algorithm.

In case of arbitrary measurements, we investigate the possibility of achieving practical re-

covery via an iterative-hard-thresholding algorithm when m � rsγ ln(en/s) for some exponent

γ > 0. We show that this is feasible for γ = 2, and that the proposed analysis cannot cover

the case γ ≤ 1. The precise value of the optimal exponent γ ∈ [1, 2] is the object of a question,

raised but unresolved in this paper, about head projections for the jointly low-rank and bisparse

structure.

Some related questions are partially answered in passing. For rank-one measurements, we

suggest on arcane grounds an iterative-hard-thresholding algorithm modified to exploit the non-

standard restricted isometry property obeyed by this type of measurements.
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sample complexity, restricted isometry properties, iterative thresholding algorithms, head and tail

projections.
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1 Introduction

This whole article is concerned with the inquiry below.

Main Question. What is the minimal number of linear measurements needed to recover jointly

r-rank and s-bisparse symmetric n× n matrices via an efficient algorithm?
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Jointly Low-Rank and Bisparse Recovery

This minimal number of measurements will be called sample complexity. We will show that it

is of the order rs ln(en/s). Nevertheless, we do not consider the question fully resolved because

of the lack of efficient algorithms for arbitrary measurements and of the limitation of an efficient

algorithm to factorized measurements, and thus to the only applications that could support such

a structured sensing. Settling the question by providing an efficient algorithm applicable to any

type of measurements is therefore still open. Before diving into our investigations, let us start by

clarifying a few points.

• What are ‘jointly r-rank and s-bisparse symmetric n× n matrices’?

In this article, we consider exclusively matrices X ∈ Rn×n that are symmetric, i.e., X> = X. The

set of r-rank (symmetric) matrices will be denoted as

(1) Σ[r] :=
{
X ∈ Rn×n : X> = X, rank(X) ≤ r

}
and the set of s-bisparse (symmetric) matrices will be denoted as

(2) Σ(s) :=
{
X ∈ Rn×n : X> = X, XS×S = 0 for some S ⊆ J1 : nK with |S| = s

}
,

where MΩ = 0 for M ∈ Rn×n and Ω ⊆ J1 : nK× J1 : nK means that all entries of M indexed by Ω

are zeros, and Ω stands for the complement of Ω.

Hence, the jointly r-rank and s-bisparse (symmetric) matrices we are interested in are elements of

(3) Σ
[r]
(s) := Σ[r] ∩ Σ(s).

We will often use the fact that Σ
[r]
(s) + Σ

[r]
(s) ⊆ Σ

[2r]
(2s).

Note that, as described below, Σ
[1]
(s) is for instance the set associated with the lifting of sparse

signals to rank-one matrices when one is interested in their recovery from phaseless (complex)

measurements [16], while for r > 1, any matrix of Σ
[r]
(s) describes a quadratic function of both few

variables and few quadratic terms whose sampling and recovery — an important problem in, e.g.,

approximation theory and high-dimensional statistics — are related to the Main Question [8, 6].

• What are the ‘linear measurements’ considered?

They can be of the arbitrary type

(4) yi = 〈X,Ai〉F = tr(A>i X), i ∈ J1 : mK,

or of the specific (rank-one) type

(5) yi = 〈Xai,ai〉 = tr(aia
>
i X), i ∈ J1 : mK.

Generically, we write y = A(X), where A : Rn×n → Rm is a linear map.
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• What is meant by ‘recover’?

More than just finding a map ∆ : Rm → Rn×n such that ∆(A(X)) = X for all X ∈ Σ
[r]
(s). Indeed,

we require the recovery procedure to be stable and robust, in the sense that we want

(6) ‖X−∆(A(X) + e)‖ ≤ C min
Z∈Σ

[r]
(s)

‖X− Z‖+D‖e‖

to hold for all X ∈ Rn×n and all e ∈ Rm. We give ourselves some freedom on the choice of the three

norms appearing in (6). We also require the recovery procedure to be implementable by a practical

algorithm, that is, an efficient algorithm whose run-time is at most polynomial in n and m (ideally,

a polynomial of low degree, of course).

In our study of the Main Question, we faced the following puzzle.

Question 1. Given a positive constant c ≤ 1, for which value of s′, depending on s, can one find a

practical algorithm that constructs, for each symmetric matrix M ∈ Rn×n, an index set S′ of size s′

such that

(7) ‖MS′×S′‖2F ≥ c max
|S|=s

‖MS×S‖2F ?

In reality, the relevant question for our goal is broader. It involves the projection P [r] onto Σ[r].

Question 2. Given a positive constant c ≤ 1, for which value of s′, depending on s, can one find a

practical algorithm that constructs, for each symmetric matrix M ∈ Rn×n, an index set S′ of size s′

such that, with r′ proportional to r,

(8) ‖P [r′](MS′×S′)‖2F ≥ c max
|S|=s

‖P [r](MS×S)‖2F ?

If s′ could be chosen proportional to s in Question 2, then the Main Question could be answered with

m � rs ln(en/s) measurements satisfying the so-called restricted isometry property (see below).

This is shown in Section 4.

We come up with partial answers to the above questions: in Proposition 8 we show that for c = 1

the answer to Question 1 is positive with s′ = s2, but that it is negative for any c > 0 when

s′ = O(s). Combined with the results of Section 4 this establishes that the answer to the Main

Question is positive with m � rsγ ln(en/s) and γ = 2, using a practical variant of iterative hard

thresholding, and that the proposed analysis cannot cover the case γ ≤ 1.

In principle, we are more interested in the measurements of type (5). Indeed, in the particular case

r = 1, the measurements taken on a matrix of the type X = xx> ∈ Σ
[1]
(s) with an s-sparse x ∈ Rn

would read

(9) yi = |〈ai,x〉|2, i ∈ J1 : mK.
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This is exactly the framework of sparse phaseless recovery (except that everything should be written

in the complex setting). In this case, the sample complexity is known [16] to be of the order

m � s ln(en/s), although it is unclear if this can be achieved with independent Gaussian vectors

a1, . . . ,am ∈ Rn.

Remark 1. Similar problems as studied here appear in the context of low-rank tensor recovery

where one would like to project onto the intersection of two or more low rank structures defined

by different matricizations. It is NP-hard to compute exact projections and efficiently computable

approximate projections are not yet good enough to show low-rank tensor recovery results for

corresponding iterative hard thresholding guarantees [23]. They are also considered in the context

of sparse PCA from inaccurate and incomplete measurements where the problem of recovering a

low-rank matrix with sparse (or compressible) right-singular vectors is analyzed [7]. In this work,

a multi-penalty approach called A-T-LAS1,2 provably reaches local convergence from a reliable,

computable initialization. Other locally convergent methods applied to the recovery of row-sparse

(or column-sparse) and low-rank matrices are the sparse power factorization (SPF) and its subspace-

concatenated variant (SCSPF), see [19]. While the latter work assumes a high peak-to-average

power ratio on the singular vectors of the observed matrix, [13] recently enlarged the class of

recoverable matrices by relaxing this constraint.

2 Theoretical Sample Complexity

Restricted isometry properties have been central in all sorts of structured recovery problems. It is

no surprise that another instance of a restricted isometry property plays a key role here, too. The

proof sketch is deferred to the appendix.

Theorem 2. Suppose A1, . . . ,Am are independent random matrices with independent N (0, 1/m)

entries. Given δ > 0, there exist two values C, c > 0 (only depending on δ), such that, with failure

probability at most 2 exp(−cm),

(10) (1− δ)‖Z‖2F ≤ ‖A(Z)‖22 ≤ (1 + δ)‖Z‖2F for all Z ∈ Σ
[r]
(s)

provided m ≥ Crs ln(en/s).

For the rest of this section, we place ourselves in the situation where the measurement map A satis-

fies the restricted isometry property (10), which can occur as soon as m is of the order rs ln(en/s).

We can then propose several robust algorithms that recover X ∈ Σ
[r]
(s) from y = A(X) + e. The

first obvious candidate is

(11) ∆(y) = argmin
Z∈Σ

[r]
(s)

‖y −A(Z)‖2.

We immediately see that ‖y −A(∆(y))‖2 ≤ ‖y −A(X)‖2 = ‖e‖2, from where it follows that

(12) ‖A(X)−A(∆(y))‖2 ≤ ‖y −A(∆(y))‖2 + ‖e‖2 ≤ 2‖e‖2,
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and we finally derive that

(13) ‖X−∆(A(X) + e)‖F ≤
1√

1− δ
‖A(X)−A(∆(A(X) + e))‖2 ≤

2√
1− δ

‖e‖2.

However, this scheme is not really an appropriate candidate, since producing ∆(y) is NP-hard in

general (see below).

After a decade or so of `1-norm and nuclear norm minimizations, the next obvious candidate stands

out as

(14) ∆(y) = argmin
Z∈Rn×n

F (Z) subject to ‖y −A(Z)‖2 ≤ ‖e‖2,

where F is a convex function promoting the joint low-rank and bisparsity structure. The nega-

tive results from [22] indicate that reducing the sample complexity below min{rn, s2 ln(en/s)} is

unattainable when F is a positive combination of the `1-norm and nuclear norm.

What about a variant of iterative hard thresholding? Consider the sequence (Xk)k≥0 defined by

(15) Xk+1 = P
[r]
(s)(Xk + A∗(y −A(Xk))),

where the adjoint of A is given by

A∗ : u ∈ Rm 7→
m∑
i=1

uiAi ∈ Rn×n

and where P
[r]
(s) : Rn×n → Σ

[r]
(s) denotes the projection onto Σ

[r]
(s), that is, the operator of best

approximation from Σ
[r]
(s). One can show (see Appendix or [2]) that if ∆(y) is defined as a cluster

point of (Xk)k≥0, then

(16) ‖X−∆(A(X) + e)‖F ≤ C‖e‖2

holds for all X ∈ Σ
[r]
(s) and all e ∈ Rm. Here also the issue is that computing P

[r]
(s) is NP-hard (see

Section 5), which incidentally justifies the NP-hardness of (11) (think of A = I). What about

replacing P
[r]
(s) by an operator of near-best approximation from Σ

[r]
(s), as in, e.g., [14]? After all, if

there is any chance for (6) to hold, then such an operator must exist (think again of A = I). We

will in fact construct such an operator in Subsection 5.3. But substituting P
[r]
(s) by such an operator

in the proof of Theorem 16 (see Appendix) is not enough to do the trick.

3 Optimal Sample Complexity with Factorized Measurements

In this section, we show that the optimal sample complexity can be achieved with a practical

algorithm in a rather special measurement framework. This framework being restricted to the

specific structure of this sensing procedure, the Main Question remains of interest.
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We suppose here that matrices X ∈ Σ
[r]
(s) are acquired via measurements in factorized form, namely

(17) yi = 〈X,B>AiB〉, i ∈ J1 : mK,

where A1, . . . ,Am ∈ Rp×p allow for low-rank recovery and B ∈ Rp×n allows for sparse recovery. The

recovery algorithm proceeds in two steps, which are both practical, i.e., efficiently implementable.

1. Compute Y] ∈ Rp×p from y ∈ Rm as a solution of the nuclear norm minimization

minimize
Y∈Rp×p

‖Y‖∗ subject to 〈Y,Ai〉F = yi, i ∈ J1 : mK,

or as the output of another low-rank recovery algorithm such as iterative hard thresholding.

2. Compute X] ∈ Rn×n from Y] as the output of the HiHTP algorithm with measurement map

B : Z ∈ Rn×n 7→ BZB> ∈ Rp×p.

Although we refer to [24, 25] for the exact formulation of the hierarchically structured sparsity hard

thresholding pursuit (HiHTP) algorithm, a few words about the concept of hierarchical sparsity are

in order before we state our result about the two-step recovery procedure above. A matrix is said to

be (s, t)-hierachical sparse (or simply (s, t)-sparse) if at most s of its columns are nonzero and each

of these columns possesses at most t nonzero entries. Thus, s-bisparse matrices are in particular

(s, s)-sparse. The HiHTP algorithm essentially relies on the possibility to compute the projection

(operator of best approximation) onto (s, t)-sparse matrices. In contrast to the projection onto

s-bisparse matrices, this is indeed an easy task: first, select the t largest absolute entries in each

column and calculate the resulting `2-norm, then select the s columns with the largest of these

`2-norms.

Theorem 3. Let A1, . . . ,Am ∈ Rp×p be independent standard Gaussian matrices and let B ∈ Rp×n

be a standard Gaussian matrix independent of A1, . . . ,Am. If

(18) p � s ln(en/s) and m � rp,

so that m � rs ln(en/s), then the probability that every X ∈ Σ
[r]
(s) is exactly recovered from

yi = 〈X,B>AiB〉, i ∈ J1 : mK, via the above two-step procedure is at least 1− 2 exp(−cp).

Proof. First, notice that the matrix BXB> ∈ Rp×p has rank at most r, since X has rank at most r,

and that it satisfies

(19) 〈BXB>,Ai〉F = tr(A>i BXB>) = tr(B>A>i BX) = 〈X,B>AiB〉F = yi, i ∈ J1 : mK.

Since A1, . . . ,Am ∈ Rp×p are independent standard Gaussian matrices and m � rp, it is by now

well-known (see, e.g., [4, 17]) that, with failure probability at most exp(−cm), the matrix BXB>

is recovered via nuclear norm minimization (or another suitable algorithm), so that Y] = BXB>.
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Second, since the matrix X ∈ Rn×n is (s, s)-sparse and satisfies B(X) = BXB> = Y], Theorem 1

of [24] implies that the matrix X will be exactly recovered via HiHTP as long as the so-called

HiRIP of order (3s, 2s) holds. According to Theorem 1 of [25], the latter is satisfied when B obeys

a standard RIP, and the latter is indeed fulfilled with failure at most exp(−cp) by the matrix

B (or rather by a renormalization of it), because B ∈ Rp×n is a standard Gaussian matrix with

p � s ln(en/s).

All in all, exact recovery of X is guaranteed after the two steps with failure probability bounded

by exp(−cm) + exp(−cp) ≤ 2 exp(−cp).

Remark 4. It is possible to extend Theorem 3 beyond the strictly Gaussian setting. In particular,

if A1, . . . ,Am take the form Ai = aia
>
i for some independent standard Gaussian vectors ai ∈ Rp,

then the first-step recovery of BXB> can still be achieved via nuclear norm minimization (see

[3, 17, 18]) or by some modified iterative hard thresholding algorithm (see [12]). Note that the

measurements made on X ∈ Rn×n are in this case rank-one measurements given by yi = 〈Xa′i,a
′
i〉,

where a′i := B>ai.

Remark 5. Let us mention that sensing strategies similar to (17) have been proposed before for

other objects with related structures or for connected problems. For instance, when estimating

k-row-sparse and r-rank matrices X ∈ Rn×n from m “nested” measurements yi = 〈WX,Ai〉,
[1] showed that RIP conditions imposed on W ∈ Rp×n and on the linear operator associated

with A1, . . . ,Am yield a computationally efficient two-stage method that can (nearly) achieve

a minimax lower bound from m � rmax{p, n} measurements where p � k log(n/k), i.e., from

m � max{rk log(n/k), rn}. A two-stage sensing strategy has been also proposed in [16] for the

sparse phase retrieval problem. In this case, the sensing model is factored into a linear operator

with robust null space property and a stable phase retrieval matrix — the latter allows to recover

a compressed form of the sparse vector, using e.g. PhaseLift [5], and then the former allows to

recover this vector via any compressive sensing algorithm.

4 Towards Practical Sample Complexity

In most scenarios, the measurement map is not of the factorized type considered in the previous

section, so the two-step procedure cannot even be executed. It is therefore still relevant to search for

practical recovery algorithms that can be applied with arbitrary measurement schemes and study

the sample complexity using, e.g., Gaussian measurements. As mentioned at the end of Section 2,

a difficulty occurs when one tries to use a near-best approximation operator instead of the best

approximation operator P
[r]
(s) in the iterative hard thresholding algorithm (15). Such a difficulty

was also encountered in model-based compressive sensing. A workaround was found in [15]. As we

will see below, our attempt to imitate it prompted Question 2.

Let us start with the observation that any of the structures Σ(s), Σ[r], or Σ
[r]
(s) is a union of subspaces,
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which we generically write as

Σ =
⋃

V ∈VΣ

V.

Then the projection onto Σ, i.e., the operator of best approximation from Σ with respect to the

Frobenius norm, acts on any M ∈ Rn×n via

(20) PΣ(M) = PV (M)(M)

where

V (M) = argmin
V ∈VΣ

‖M− PV (M)‖2F(21)

= argmax
V ∈VΣ

‖PV (M)‖2F ,(22)

and PV evidently denotes the orthogonal projection onto the subspace V . By analogy with the

vector case, we can think of (21) as a ‘tail’ property for the projection PΣ and of (22) as a ‘head’

property. We keep this terminology introduced in [15] when relaxing the notion of projection.

Precisely, we shall call an operator T : Rn×n → Σ a tail projection for Σ with constant CT ≥ 1 (or

near best approximation from Σ with constant CT ) if

(23) ‖M− T (M)‖F ≤ CT ‖M− PΣ(M)‖F for all M ∈ Rn×n.

We may have to relax this notion further by allowing the operator T to map into a bigger set Σ′ ⊇ Σ.

Thus, by tail projection for Σ into Σ′ with constant CT , we mean an operator T : Rn×n → Σ′ which

satisfies the tail condition (23). Similarly, an operator H : Rn×n → Σ is called a head projection

for Σ with constant cH ≤ 1 if

(24) ‖H(M)‖F ≥ cH‖PΣ(M)‖F for all M ∈ Rn×n.

A head projection for Σ into Σ′ ⊇ Σ with constant cH is an operator H : Rn×n → Σ′ which satisfies

the head condition (24).

At this point, it is worth mentioning (see Appendix) that the (genuine) projection onto Σ
[r]
(s) acts

on any M ∈ Rn×n via

(25) P
[r]
(s)(M) = P [r](MS?×S?), where S? = argmax

|S|=s
‖P [r](MS×S)‖F .

In Section 5, we will see that we can produce a tail projection for Σ
[r]
(s).

The size of s′ for which one can produce a head projection for Σ
[r]
(s) into Σ

[r′]
(s′) with r′ proportional to r

is exactly the focus of Question 2. We state and prove below (in the idealized setting where there is

no measurement error) that a variant of iterative hard thresholding — using such a head projection

— allows to perform joint low-rank and bisparse recovery via from m � rs′ ln(en/s) measurements.
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This will be interesting if it can be established that s′ � sγ with γ < 2 is feasible. Then, for small r

(and in particular in the case of sparse phaseless recovery where r = 1), m � rsγ ln(en/s) will be of

a smaller order than both rn — the sample complexity of rank-r matrices — and s2 ln(en/s). This

last bound is associated with enforcing only the matrix bisparse structure, as ensured by combining

Theorem 6 in the case r = n with Proposition 8 and Theorem 2 (see below). Quite obviously this

last context determines that γ = 2 is feasible (as stated in the abstract) since s2 ≤ rs2.

Theorem 6. Let T be a tail projection for Σ
[r]
(s) with constant CT ≥ 1 and let H be a head

projection for Σ
[2r]
(2s) into Σ

[r′]
(s′) with constant cH ≤ 1 which additionally takes the form

(26) H(M) = P [r′](MS′×S′) for some index set S′ (depending on M) of size s′.

If (1+CT )2(1−c2
H) < 1 and if the restricted isometry property (10) holds on Σ

[2r+r′]
(2s+s′) with constant

δ > 0 small enough to have

(27) ρ := (1 + CT )2(1− c2
H(1− δ)2 + 2δ(1 + δ)) < 1,

then any X ∈ Σ
[r]
(s) acquired from y = A(X) is recovered as the limit of the sequence (Xk)k≥0

defined by

(28) Xk+1 = T [Xk +H(A∗(y −A(Xk)))].

Proof. We shall prove that, for any k ≥ 0,

(29) ‖X−Xk+1‖2F ≤ ρ ‖X−Xk‖2F .

The tail property guarantees that

(30) ‖[Xk +H(A∗(y −A(Xk)))]−Xk+1‖F ≤ CT ‖[Xk +H(A∗(y −A(Xk)))]−X‖F

and the triangle inequality then yields1

(31) ‖X−Xk+1‖F ≤ (1 + CT )‖[Xk +H(A∗(y −A(Xk)))]−X‖F .

We now concentrate on bounding ‖[Xk+H(A∗(y−A(Xk)))]−X‖F = ‖Z−H(A∗A(Z))‖F , where

we have set Z := X−Xk ∈ Σ
[2r]
(2s). By expanding the square, we obtain

‖Z−H(A∗A(Z))‖2F = ‖Z‖2F + ‖H(A∗A(Z))‖2F − 2〈Z, H(A∗A(Z))〉F(32)

= ‖Z‖2F + ‖H(A∗A(Z))‖2F − 2〈A∗A(Z), H(A∗A(Z))〉F
− 2〈Z−A∗A(Z), H(A∗A(Z))〉F .

1It is probably possible to replace 1+CT by a constant arbitrarily close to 1 if T mapped into Σ
[r′′]
(s′′) with r′′ and s′′

proportional to r and s (with proportionality constant increasing when CT decreases), as in [26] for the sparse vector

case and in [12] for the low-rank matrix case. This would allow us to eliminate the condition (1 +CT )2(1− c2H) < 1.
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In view of the form (26) of the head projection, followed by the facts that P [r′] acts locally as an

orthogonal projection and that it preserves the bisupport of a matrix, we observe that

‖H(A∗A(Z))‖2F = 〈P [r′](A∗A(Z)S′×S′), P
[r′](A∗A(Z)S′×S′)〉F(33)

= 〈A∗A(Z)S′×S′ , P
[r′](A∗A(Z)S′×S′)〉F = 〈A∗A(Z), P [r′](A∗A(Z)S′×S′)〉F

= 〈A∗A(Z), H(A∗A(Z)))〉F .

Substituting the latter into (32) gives

(34) ‖Z−H(A∗A(Z))‖2F = ‖Z‖2F − ‖H(A∗A(Z))‖2F − 2〈Z−A∗A(Z), H(A∗A(Z))〉F .

The inner product term is small in absolute value. Indeed, in view of Lemma 15 (see Appendix),

we have

(35) |〈Z−A∗A(Z), H(A∗A(Z))〉F | ≤ δ‖Z‖F ‖H(A∗A(Z))‖F ≤ δ(1 + δ)‖Z‖2F ,

where the bound on ‖H(A∗A(Z))‖F followed from the observation (33) and the restricted isometry

property (10), according to

‖H(A∗A(Z))‖2F = 〈A∗A(Z), H(A∗A(Z))〉F = 〈A(Z),A(H(A∗A(Z)))〉F(36)

≤ ‖A(Z)‖F ‖A(H(A∗A(Z)))‖F ≤ (1 + δ)‖Z‖F ‖H(A∗A(Z))‖F .

It now remains to prove that ‖H(A∗A(Z))‖2F is large, and this is where the head condition comes

into play. Precisely, assuming that Z is supported on S′′ × S′′ with |S′′| ≤ 2s, we know on the one

hand that

(37) ‖H(A∗A(Z))‖F ≥ cH‖P [2r](A∗A(Z)S′′×S′′)‖F .

On the other hand, using in particular the restricted isometry property (10) and Von Neumann’s

trace inequality combined with the fact that Z has rank at most 2r, we obtain

(1− δ)‖Z‖2F ≤ ‖A(Z)‖22 = 〈Z,A∗A(Z)〉F = 〈Z,A∗A(Z)S′′×S′′〉F(38)

≤
2r∑
i=1

σi(Z)σi(A∗A(Z)S′′×S′′) ≤

[
2r∑
i=1

σi(Z)2

]1/2 [ 2r∑
i=1

σi(A∗A(Z)S′′×S′′)
2

]1/2

= ‖Z‖F ‖P [2r](A∗A(Z)S′′×S′′)‖F .

Combining (37) and (38) yields

(39) ‖H(A∗A(Z))‖F ≥ cH(1− δ)‖Z‖F .

Substituting (39) and (35) into (34), we deduce that

(40) ‖Z−H(A∗A(Z))‖2F ≤ (1− c2
H(1− δ)2 + 2δ(1 + δ)) ‖Z‖2F .

Finally, using (31), we arrive that

(41) ‖X−Xk+1‖2F ≤ (1 + CT )2(1− c2
H(1− δ)2 + 2δ(1 + δ)) ‖X−Xk‖2F ,

which is the objective announced in (29).

10
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5 Tail and Head Projections

In this section, we gather some information about the construction of computable tail and head

projections for each of the structures Σ[r], Σ(s), and Σ
[r]
(s). We work under the implicit assumption

that the domain of all these projections is the space of symmetric matrices, i.e., the projections are

only applied to matrices M ∈ Rn×n satisfying M> = M.

5.1 Low-rank structure

There is no difficulty whatsoever here — even the exact projection P [r] : Rn×n → Σ[r] is accessible.

Indeed, it is well known that if X ∈ Rn×n has singular value decomposition

(42) X =
n∑
i=1

σi(X)uiv
>
i

where the singular values σ1(X) ≥ · · · ≥ σn(X) ≥ 0 are arranged in nondecreasing order, then the

projection of X onto the set of rank-r matrices is obtained by truncating this decomposition to

include only the first r summands, i.e.,

(43) P [r](X) =

r∑
i=1

σi(X)uiv
>
i .

Note that P [r](M) is symmetric whenever M itself is symmetric.

5.2 Bisparsity structure

Quickly stated, exact projections for Σ(s) are NP-hard, but there are computable tail projections

for Σ(s). Head projections for Σ(s) are still NP-hard if they are forced to map exactly into Σ(s).

If they are allowed to map into a larger set Σ(s′), the situation depends on the order of s′ compared

to s — Question 1 in fact asks which value of s′ > s allows for a computable head projection.

We provide a few incomplete results related to this situation.

Exact projection. Finding the exact projection for Σ(s) amounts to solving the problem

(44) maximize
|S|=s

‖MS×S‖2F .

This is NP-hard even with the restriction that M is an adjacency matrix of a graph because it then

reduces to the densest k-subgraph problem, which is known to be NP-hard [21].

11
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Tail projections. There is a simple procedure to obtain a practical tail projection for Σ(s), as

described below.

Proposition 7. Given a symmetric matrix M ∈ Rn×n, let S? denote an index set corresponding

to s columns of M with largest `2-norms, i.e.,

(45) S? = argmin
|S|=s

‖M−M:×S‖F .

Then

(46) ‖M−MS?×S?‖F ≤
√

2 min
|S|=s

‖M−MS×S‖F .

Proof. For any index set T , the symmetry of M imposes that ‖MT×T ‖2F = ‖MT×T ‖2F , hence

(47) ‖M−MT×T ‖2F = ‖MT×T ‖
2
F + ‖MT×T ‖

2
F + ‖MT×T ‖

2
F = 2‖MT×T ‖

2
F + ‖MT×T ‖

2
F .

In view of ‖MT×T ‖2F + ‖MT×T ‖2F = ‖M:×T ‖2F = ‖M−M:×T ‖2F , we deduce that

(48) ‖M−M:×T ‖2F ≤ ‖M−MT×T ‖2F ≤ 2‖M−M:×T ‖2F .

Applying the latter with T equal to S? and with T equal to an arbitrary index set S of size s shows

that

(49) ‖M−MS?×S?‖2F ≤ 2‖M−M:×S?‖2F ≤ 2‖M−M:×S‖2F ≤ 2‖M−MS×S‖2F ,

which yields the required result after taking the square root.

Head projections. The literature on the densest k-subgraph problem informs us that finding a

head projection for Σ(s) is also an NP-hard problem [21]. In our setting, though, there is room to

relax the head projection to map into Σ(s′) with s′ > s. In this regard, Question 1 asks if one can

actually compute a head projection for Σ(s) into Σ(s′). We do not have a definite answer for it, but

we prove below that the exponent γ in a speculative behavior s′ � sγ must lie in (1, 2] — note that

a behavior s′ � spolylog(s) is not excluded. We then highlight a few observations which feature a

nonabsolute constant cH when s′ � s.

Proposition 8. The practical algorithm Algorithm 1 yields a head projection for Σ(s) into Σ(s2)

with constant cH = 1. However, there is no practical algorithm that yields a head projection for

Σ(s) into Σ(s′) with absolute constant cH > 0 when s′= O(s).

Proof. From the definition of the index sets {Ci : 1 ≤ i ≤ n}, R and S′ in Algorithm 1, for any

index set S with |S| = s, we have

‖MS×S‖2F =
∑
i∈S
‖Mi×S‖22 ≤

∑
i∈S
‖Mi×({i}∪Ci)‖

2
2 ≤

∑
i∈R
‖Mi×({i}∪Ci)‖

2
2(50)

= ‖MR×(R
⋃
∪i∈RCi)‖

2
F ≤ ‖MS′×S′‖2F ,

12
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Algorithm 1 A head projection H for Σ(s) to Σ(s2) with cH = 1

Input: A symmetric matrix M ∈ Rn×n, a sparsity level s ∈ J1 : nK.

for i ∈ J1 : nK do

Ci := argmax
|C|=s−1,C 63i

‖Mi×({i}∪C)‖2

ci := ‖Mi×({i}∪Ci)‖2
end

R := argmax
|R′|=s

‖cR′‖, with c = (c1, · · · , cn)>

S′ := R ∪ (∪i∈RCi)

return H(M) := MS′×S′ ∈ Σ(s2)

where the index set S′ = R
⋃
∪i∈RCi has size at most s+ s(s− 1) = s2. This proves the first part

of the statement.

For the second part of the statement, we shall show that if we could compute, for each M ∈ Rn×n,

an index set S′ with |S′| ≤ Cs such that

(51) ‖MS′×S′‖2F ≥ c2
H max
|S|=s

‖MS×S‖2F ,

then a practical algorithm that yields a head approximation for Σ(s) into Σ(s) itself would follow,

contradiction the NP-hardness of the latter task. So let us assume that we have a computable

procedure to construct an index set S′ as above. Looking without loss of generality at the case

where s is even and |S′| = Cs, we consider an index set R ⊆ S′ of size s/2 corresponding to s/2

largest values of ‖Mi×S′‖2. By comparing averages, we see that

(52)
1

s/2
‖MR×S′‖2F ≥

1

Cs
‖MS′×S′‖2F , i.e., ‖MR×S′‖2F ≥

1

2C
‖MS′×S′‖2F .

Next, we consider an index set C ⊆ S′ of size s/2 corresponding to s/2 largest values of ‖MR×j‖2.

By comparing averages again, we see that

(53)
1

s/2
‖MR×C‖2F ≥

1

Cs
‖MR×S′‖2F , i.e., ‖MR×C‖2F ≥

1

2C
‖MR×S′‖2F .

Combining (53), (52), and (51), we arrive at

(54) ‖MR×C‖2F ≥
c2
H

4C2
max
|S|=s

‖MS×S‖2F .

With T := R ∪ C, which has size at most s, this immediately implies that

(55) ‖MT×T ‖2F ≥
c2
H

4C2
max
|S|=s

‖MS×S‖2F ,

meaning that a head approximation for Σ(s) into Σ(s) can be produced in a practical way. Since

this is not possible, the second part of the statement is proved.

13
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Algorithm 2 A head projection H for Σ(s) with cH = 1/
√
s

Input: A symmetric matrix M ∈ Rn×n, a sparsity level s ∈ J1 : nK.

for j ∈ J1 : nK do

Sj := argmax
|S|=s,S3j

‖MS×j‖22

end

j? := argmax
j∈J1:nK

‖MSj×j‖22

return H(M) := MSj?×Sj?
∈ Σ(s)

Now that we have established the impracticability of head approximations for Σ(s) into Σ(Cs) with

an absolute constant cH , we examine what can be done when cH can depend on specific parameters.

Proposition 9. Given a symmetric matrix M ∈ Rn×n, we consider the practical algorithm that

returns the matrix MT×T for a set T := R ∪ C defined by the union of the index sets of size s

R = argmax
|S|=s

‖MS×:‖2F ,(56)

C = argmax
|S|=s

‖MR×S‖2F .(57)

This algorithm yields a head projection for Σ(s) into Σ(2s) with constant cH =
√
s/n.

Proof. From the definition of R and C, it is painless to see that, for an arbitrary index set S of

size s,

(58) ‖MT×T ‖2F ≥ ‖MR×C‖2F ≥
s

n
‖MR×:‖2F ≥

s

n
‖MS×:‖2F ≥

s

n
‖MS×S‖2F ,

which concludes the proof.

When n > s2 (which is the most realistic situation from our perspective), the previous observation

is superseded by the following one.

Proposition 10. The practical algorithm Algorithm 2 yields a head projection for Σ(s) with

constant cH = 1/
√
s.

Proof. It is painless to see that, given the definition of Algorithm 2, for an arbitrary index set S of

size s,

(59) ‖MS×S‖2F =
∑
j∈S
‖MS×j‖22 ≤

∑
j∈S
‖MSj×j‖22 ≤ s‖MSj?×j?‖

2
2 ≤ s‖MSj?×Sj?

‖2F ,

which concludes the proof.
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As a final remark, we show that head projections can be computed for specific symmetric matrices,

e.g., matrices of rank one.

Proposition 11. Given a symmetric matrix M =
∑r

k=1 vkv
>
k ∈ Rn×n of rank-r, we consider the

practical algorithm that returns the matrix MS?×S? , with S? := S1 ∪ · · · ∪Sr, and Sk the index set

of s largest absolute entries of vk, 1 ≤ k ≤ r. This algorithm yields a head projection for Σ(s) into

Σ(rs) with constant cH = 1/
√
r when applied to r-rank positive semidefinite matrices.

Proof. Given the definition of S?, we are going to show that, for any index set S of size s,

(60) ‖MS?×S?‖F ≥
1√
r
‖MS×S‖F .

To do so, we start by writing

(61) M2
i,j =

(
r∑

k=1

(vk)i(vk)j

)2

=

r∑
k,`=1

(vk)i(vk)j(v`)i(v`)j .

Then, for any index set T , in view of

‖MT×T ‖2F =
∑
i,j∈T

r∑
k,`=1

(vk)i(vk)j(v`)i(v`)j =

r∑
k,`=1

∑
i,j∈T

(vk)i(v`)i(vk)j(v`)j(62)

=
r∑

k,`=1

(∑
i∈T

(vk)i(v`)i

)2

,

we derive on the one hand that

(63) ‖MT×T ‖2F ≥
r∑

k=1

(∑
i∈T

(vk)
2
i

)2

and on the other hand, by the Cauchy–Schwarz inequality applied twice, that

(64) ‖MT×T ‖2F ≤
r∑

k,`=1

(∑
i∈T

(vk)
2
i

)(∑
i∈T

(v`)
2
i

)
=

(
r∑

k=1

∑
i∈T

(vk)
2
i

)2

≤ r
r∑

k=1

(∑
i∈T

(vk)
2
i

)2

.

Applying (64) with T = S and using the defining property of each Sk and of S?, we obtain

(65) ‖MS×S‖2F ≤ r
r∑

k=1

(∑
i∈S

(vk)
2
i

)2

≤ r
r∑

k=1

∑
i∈Sk

(vk)
2
i

2

≤ r
r∑

k=1

(∑
i∈S?

(vk)
2
i

)2

≤ r‖MS?×S?‖2F ,

the last inequality being (63) applied with T = S?. The prospective inequality (60) is proved.
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5.3 Joint low-rank and bisparsity structure

Quickly stated, exact projections for Σ
[r]
(s) are NP-hard, but there are computable tail projections

for Σ
[r]
(s). Head projections for Σ

[r]
(s) are still NP-hard if they are forced to map exactly into Σ

[r]
(s).

If they are allowed to map into a larger set Σ
[r′]
(s′), the situation is not settled — this directly relates

to Question 2.

We provide a few incomplete results related to this situation.

Exact projections. We already know from Subsection 5.2 that it is NP-hard to find the exact

projection onto Σ
[r]
(s) in general, since we are talking about exact projection onto Σ(s) when r = n.

But we are more interested in the case where r is a small constant, say r = 1 as a prototype. Then

finding the exact projection onto Σ
[1]
(s) amounts to solving the problem

(66) maximize
|S|=s

‖P [1](MS×S)‖F = maximize
|S|=s

σmax(MS×S).

Thus, when M is a positive semidefinite matrix, we consider the problem

(67) maximize
‖x‖0≤s,‖x‖2=1

〈Mx,x〉.

This is the so-called sparse principal component analysis problem, which is NP-hard [20].

Tail projections. There is a fairly simple procedure to create a practical tail projection for Σ
[r]
(s).

It is based on the availability of tail projections for both Σ[r] and Σ(s). The argument is in fact

valid for any two ‘structures’ Σ′ and Σ′′ such that Σ′ is compatible with a tail projection T ′′ for Σ′′,

in the sense that

(68) Z ∈ Σ′ =⇒ T ′′(Z) ∈ Σ′.

The compatibility applies to the low-rank and bisparsity structures in two different ways: firstly,

Σ[r] is compatible with the tail projection for Σ(s) given in Proposition 7, by virtue of the fact that

a matrix Z of rank at most r has all its submatrices ZS×S of rank at most r, too; secondly, Σ(s) is

compatible with the exact projection for Σ[r], by virtue of the fact that a matrix Z supported on

S × S has all its singular vectors supported on S, so that P [r](Z) is supported on S × S, too. Here

is the abstract statement valid for arbitrary structures Σ′ and Σ′′.

Proposition 12. Let T ′ and T ′′ be tail projections for Σ′ and Σ′′ with constants CT ′ and CT ′′ . If Σ′

is compatible with T ′′, then T ′′◦T ′ is a tail projection for Σ′∩Σ′′ with constant CT ′+CT ′′+CT ′CT ′′ .

16



S. Foucart, R. Gribonval, L. Jacques, H. Rauhut

Proof. We first remark that the compatibility condition ensures that T ′′ ◦ T ′ maps into Σ′ ∩ Σ′′.

Let M ∈ Rn×n and let P (M) denote its exact projection for Σ′ ∩ Σ′′. The tail condition for T ′

implies that

(69) ‖M− T ′(M)‖F ≤ CT ′‖M− P (M)‖F .

As a result, we obtain

(70) ‖T ′(M)− P (M)‖F ≤ ‖T ′(M)−M‖F + ‖M− P (M)‖F ≤ (CT ′ + 1)‖M− P (M)‖F .

The tail condition for T ′′ combined with (70) yields

(71) ‖T ′(M)− T ′′(T ′(M))‖F ≤ CT ′′‖T ′(M)− P (M)‖F ≤ CT ′′(CT ′ + 1)‖M− P (M)‖F .

Using (69) and (71), we derive that

‖M− T ′′(T ′(M))‖F ≤ ‖M− T ′(M)‖F + ‖T ′(M)− T ′′(T ′(M))‖F(72)

≤ (CT ′ + CT ′′(CT ′ + 1))‖M− P (M)‖F ,

which proves that T ′′ ◦ T ′ is a tail projection for Σ′ ∩ Σ′′ with the desired constant.

Head projections. The literature on the sparse principal component analysis problem informs

us that finding a head projection for Σ
[r]
(s) is still an NP-hard problem [20, Theorem 2]. In our

setting, though, there is room to relax the head projection to map into Σ
[r′]
(s′) with r′ > r and s′ > s.

In this regard, Question 2 asks if one can actually compute a head projection for Σ
[r]
(s) into Σ

[r′]
(s′)

with r′ = Cr. We do not have a definite answer for it, but we highlight an observation featuring a

nonabsolute constant cH , based on what was done for the bisparsity structure.

Proposition 13. Given a symmetric matrix M ∈ Rn×n and r ≤ s, the practical algorithm that

yields P [r](H(M)) for the operator H defined in Algorithm 2 is a head projection for Σ
[r]
(s) with

constant cH =
√
r/s.

Proof. Given a symmetric matrix M ∈ Rn×n, we consider the row (or column) index set S? of

size s supporting the non-zero rows (or columns) of H(M) ∈ Σ(s) for the operator H defined in

Algorithm 2. By Proposition 10 for any index set S of size s, we have

(73) ‖MS?×S?‖2F ≥
1

s
‖MS×S‖2F .

Then, by noticing that the average of the r largest squared singular values of MS?×S? is larger than

the average of all the squared singular values of MS?×S? , we derive

(74) ‖P [r](MS?×S?)‖2F ≥
r

s
‖MS?×S?‖2F ≥

r

s2
‖MS×S‖2F ≥

r

s2
‖P [r](MS×S)‖2F .

The desired result is now proved.

A similar argument, based on Proposition 9 instead of Proposition 10, would yield a head projection

for Σ
[r]
(s) into Σ

[r]
(2s) with constant cH =

√
r/n.
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6 Sample Complexity with Rank-One Measurements

The specific (rank-one) measurements (5) do not result in a measurement map A : Rn×n → Rm

obeying the standard restricted isometry property (10). However, it will satisfy the following

version featuring the `1-norm as an inner norm. This was established in [3] when considering the

low-rank structure alone. The proof sketch is deferred to the appendix. Note that the rank-one

measurements (5) also satisfy a version of the null space property ensuring recovery via nuclear

norm minimization, see [17, 18].

Theorem 14. Suppose a1, . . . ,am ∈ Rm are independent vectors with independent N (0, 1/m)

entries. Then, with failure probability at most 2 exp(−cm),

(75) α‖Z‖F ≤
∥∥∥(a>i Zai)

m
i=1

∥∥∥
1
≤ β‖Z‖F for all Z ∈ Σ

[r]
(s),

provided m ≥ Crs ln(en/s). The constants β ≥ α > 0 are absolute.

The restricted isometry property (75) already guarantees that the specific-sample complexity —

the theoretical one — is m � rs ln(en/s), as expected. Indeed, given y = A(X) + e for some

X ∈ Σ
[r]
(s), consider the unpractical recovery scheme

(76) ∆(y) = argmin
Z∈Σ

[r]
(s)

‖y −A(Z)‖1.

In a similar spirit to (12)-(13), we can derive that

(77) ‖X−∆(A(X) + e)‖F ≤
2

α
‖e‖1.

For a practical algorithm scheme, we have in mind an algorithm belonging to the iterative hard

thresholding family. Namely, we can think of constructing a sequence (Xk) of matrices in Σ
[r′]
(s′) by

the recursion2

(78) Xk+1 = T [Xk + νkH(A∗sgn(y −AXk))] , νk =
‖y −AXk‖1

β2
.

Here, the operators T : Rn×n → Σ
[r′]
(s′) and H : Rn×n → Σ

[r′′]
(s′′), depending on parameters r′, s′,

r′′, and s′′, may be tail and head projections. It could also be useful to require the operator T to

satisfy the property3 that, for all X ∈ Σ
[r]
(s) and all Z ∈ Rn×n,

(79) ‖X− T (Z)‖F ≤ η(C)‖X− Z‖F with η(C ′) −→
C′→∞

1.

2It is ‘natural’ to include the sgn operator in order to exploit the restricted isometry property with `1 inner norm.
3The inequality of (79) implies that T is a tail projection with CT = 1 + η(C′), since

‖M−T (M)‖F ≤ ‖M−P [r]

(s)(M)‖F +‖P [r]

(s)(M)−T (M)‖F ≤ ‖M−P [r]

(s)(M)‖F +η(C′)‖P [r]

(s)(M)−M‖F = CT ‖M−P [r]

(s)(M)‖F .
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With T = P
[r′]
(s′), this inequality seems rather intuitive, but it needs to be formalized — keep in

mind, however, that P
[r′]
(s′) is not accessible. When considering the low-rank structure alone, such an

inequality has been established and exploited in [12] to prove that an iterative hard thresholding

algorithm of the type (78) presents the same recovery guarantees as nuclear norm minimization for

recovery from measurements of type (5). The type of inequality (79) was first put forward for the

sparse vector case in [26] and it has been exploited in [10] to propose and analyze an iterative hard

thresholding algorithm designed for the case when the standard restricted isometry property fails.

There is an additional property that we could require about the operator T . Namely, given a matrix

M ∈ Rn×n, if T (M) is supported on S × S, then

(80) T (M) = T (MS′×S′) whenever S′ ⊇ S.

This property is true (see Appendix) for T = P
[r′]
(s′), which again is inaccessible.

7 Appendix: Proofs of Auxiliary Results

This section collects the detailed arguments for some facts that have been stated but not proved

in the narrative.

Restricted isometry properties. First, let us concentrate on Theorem 2 and briefly justify

that Gaussian measurements of type (4) satisfy the standard restricted isometry property (10).

Without going into details, we simply mention that the classical proof consisting of a concentration

inequality followed by a covering argument works — the key being to estimate the covering number

of the ‘ball’ of Σ
[r]
(s) essentially as in [4, Lemma 3.1] with the addition of a union bound.

Next, let us concentrate on Theorem 14 and briefly justify that Gaussian rank-one measurements of

type (5) satisfy the modified restricted isometry property (75). Again, without going into details,

we point out that the proof is in the spirit of [9]: for a fixed Z ∈ Rn×n, establish a concentration

inequality for
∥∥(a>i Zai)

m
i=1

∥∥
1

around its expectation �Z�, prove that this slanted norm is equivalent

to the Frobenius norm, and conclude with a covering argument.

Convergence of the idealized iterative hard thresholding. We now establish that the naive

(and impractical) iterative hard thresholding algorithm (15) allows for stable and robust recovery

of jointly low-rank and bisparse matrices under the standard restricted isometry property. The

precise statement appears after the important observation below.
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Lemma 15. Suppose that A : Rn×n → Rm satisfies the restricted isometry property (10) on Σ
[2r]
(2s)

with constant δ ∈ (0, 1). Then, for all Z,Z′ ∈ Σ
[r]
(s), one has

(81)
∣∣〈Z, (A∗A− I)(Z′)〉

∣∣ ≤ δ‖Z‖F ‖Z′‖F .
Proof. Assuming without loss of generality that ‖Z‖F = ‖Z′‖F = 1, we use in particular the

parallelogram identity to write∣∣〈Z, (A∗A− I)(Z′)〉
∣∣ =

∣∣〈A(Z),A(Z′)〉 − 〈Z,Z′〉
∣∣(82)

=

∣∣∣∣14 (‖A(Z + Z′)‖22 − ‖A(Z− Z′)‖22
)
− 1

4

(
‖Z + Z′‖2F − ‖Z− Z′‖2F

)∣∣∣∣
≤ 1

4

∣∣‖A(Z + Z′)‖22 − ‖Z + Z′‖2F
∣∣+

1

4

∣∣‖A(Z− Z′)‖22 − ‖Z− Z′‖2F
∣∣

≤ 1

4
δ‖Z + Z′‖2F +

1

4
δ‖Z− Z′‖2F =

1

4
δ
(
2‖Z‖2F + 2‖Z′‖2F

)
= δ,

which is the required result.

Theorem 16. If the restricted isometry property (10) holds on Σ
[4r]
(4s) with constant δ ∈ (0, 1/2),

then any X ∈ Σ
[r]
(s) is approximated from y = AX + e ∈ Rm as a cluster point X∞ of the sequence

(Xk)k≥0 defined by

(83) Xk+1 = P
[r]
(s) (Xk + A∗(y −AXk))

with error

(84) ‖X−X∞‖F ≤ C‖e‖2.

Proof. It is enough to prove that, for all k ≥ 0,

(85) ‖X−Xk+1‖F ≤ ρ‖X−Xk‖F + τ‖e‖2, with ρ := 2δ < 1 and τ > 0.

To start, notice that Xk+1 better approximates Xk +A∗(y−AXk) = Xk +A∗A(X−Xk) +A∗e
as an element from Σ

[r]
(s) than X does, so that

(86) ‖Xk + A∗A(X−Xk) + A∗e−Xk+1‖2F ≤ ‖Xk + A∗A(X−Xk) + A∗e−X‖2F .

Introducing X in the left-hand side, expanding the squares, and simplifying leads to

(87) ‖X−Xk+1‖2F ≤ −2〈X−Xk+1, (A∗A− I)(X−Xk) + A∗e〉.

Thanks to Lemma 15, we have

(88) |〈X−Xk+1, (A∗A− I)(X−Xk)〉| ≤ 2δ‖X−Xk+1‖F ‖X−Xk‖F ,
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while the restricted isometry property (10) also guarantees that

(89) |〈X−Xk+1,A∗e〉| = |〈A(X−Xk+1), e〉| ≤ ‖A(X−Xk+1)‖2‖e‖2 ≤
√

1 + δ‖X−Xk+1‖F ‖e‖2.

Therefore, using (88) and (89) in (87), we obtain

(90) ‖X−Xk+1‖2F ≤ 2δ‖X−Xk+1‖F ‖X−Xk‖F +
√

1 + δ‖X−Xk+1‖F ‖e‖2,

which clearly implies the required estimates (85) with τ =
√

1 + δ and (84) with C = τ/(1−ρ).

The exact projection for Σ
[r]
(s). Here, we prove the statement (25) about the form of P

[r]
(s) before

justifying that property (80) holds for T = P
[r]
(s).

Proposition 17. For M ∈ Rn×n, the projection P
[r]
(s)(M) of M onto Σ

[r]
(s) has the form P [r](MS?×S?),

where S? maximizes ‖P [r](MS×S)‖F over all index sets S of size s.

Proof. Let us remark that, for any index set T ,

‖M− P [r](MT×T )‖2F = ‖MT×T + MT×T − P [r](MT×T )‖2F(91)

= ‖MT×T ‖
2
F + ‖MT×T − P [r](MT×T )‖2F

= ‖MT×T ‖
2
F + ‖MT×T ‖2F − ‖P [r](MT×T )‖2F

= ‖M‖2F − ‖P [r](MT×T )‖2F .

Now let Z ∈ Σ
[r]
(s) and consider an index set S of size s such that Z is supported on S × S. The

defining property of S?, together with (91), implies that

‖M− P [r](MS?×S?)‖2F ≤ ‖M‖2F − ‖P [r](MS×S)‖2F = ‖MS×S‖
2
F + ‖MS×S − P [r](MS×S)‖2F(92)

≤ ‖MS×S‖
2
F + ‖MS×S − Z‖2F = ‖M− Z‖2F ,

where we have taken into account the facts that P [r](MS×S) is the best r-rank approximation

to MS×S and that MS×S and MS×S − Z are disjointly supported. Thus, we have proved that

‖M− P [r](MS?×S?)‖F ≤ ‖M− Z‖F for all Z ∈ Σ
[r]
(s), which is the desired result.

Proposition 18. For M ∈ Rn×n, considering an index set S? of size s with P
[r]
(s)(M) = P [r](MS?×S?),

one has

(93) P
[r]
(s)(M) = P

[r]
(s)(MS′×S′) whenever S′ ⊇ S?.

Proof. According to Proposition 17, it is enough to verify that, for any index set S of size s,

(94)
∥∥∥P [r]((MS′×S′)S?×S?)

∥∥∥
F
≥
∥∥∥P [r]((MS′×S′)S×S)

∥∥∥
F
.
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But this is true because (MS′×S′)S?×S? = MS?×S? and (MS′×S′)S×S = (MS×S)S′×S′ , so that

(95)
∥∥∥P [r]((MS′×S′)S×S)

∥∥∥
F
≤ ‖P [r](MS×S)‖F ≤ ‖P [r](MS?×S?)‖F ,

where the last inequality follows from the defining property of S?.
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