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Abstract

This article considers the problem of optimally recovering stable linear time-invariant systems

observed via linear measurements made on their transfer functions. A common modeling

assumption is replaced here by the related assumption that the transfer functions belong to

a model set described by approximation capabilities. Capitalizing on recent optimal-recovery

results relative to such approximability models, we construct some optimal algorithms and

characterize the optimal performance for the identification and evaluation of transfer functions

in the framework of the Hardy Hilbert space and of the disc algebra. In particular, we determine

explicitly the optimal recovery performance for frequency measurements taken at equispaced

points on an inner circle or on the torus.
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1 Backgound and Motivation

System identification can be viewed as the learning task of inferring a model to describe the behavior

of a system observed via input-output data. As such, it influences control theory as a whole, since

the model selection dictates the subsequent design of efficient controllers for the system. Linear

dynamical systems, due to their appearance in many applications, have been the focus of many

investigations. They are often handled by moving to the frequency domain, where one studies

their transfer functions, typically assumed to be elements of the Hardy space H2 (see e.g. [18,

Chapter 13]) or H∞ (see e.g. [18, Chapter 14]). Then, based on a priori information given as an

hypothesized model and on a posteriori information given as frequency observations, one seeks to

identify the transfer function in a way that minimizes the error with respect to the given norm.

∗S. F. is partially supported by NSF grants DMS-1622134 and DMS-1664803, and also acknowledges the NSF

grant CCF-1934904.
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For the model put forward in [11], various algorithms for the identification of transfer functions

in H∞ have already been proposed: in [7], interpolatory algorithms are constructed by solving a

Nevanlinna–Pick problem, [8] presents some closely related algorithms with explicit bounds in H∞
and `1 norms, and in [6] interpolatory algorithms are generalized to time-domain data by solving a

Carathéodory–Fejér problem via standard convex optimization methods. More recent works focus

on the trade-off between the number of samples required to accurately build models of dynamical

systems and the degradation of performance in various control objectives. For instance, the article

[16] derived bounds on the number of noisy input-output samples from a stable linear time-invariant

system that are sufficient to guarantee closeness of the finite impulse response approximation to the

true system in H∞-norm. In [15], linear system identification from pointwise noisy measurements

in the frequency domain was formulated as a convex minimization problem involving an `1-penalty

and error estimates in H2-norm were provided. There has also been progress in quantifying the

sample complexity of dynamical system identification using statistical estimation theory, see [17, 4].

The article [11] was one of the first to suggest adopting a perspective from optimal recovery [12] in

system identification, leading to a framework that is now textbook material (see e.g. [13, Section 4.4]

or [5, Section 3.2]). The purpose of this note is to revisit this classical framework in light of recent

optimal-recovery results involving approximability models, see [2, 10, 9]. Our setting is closely

related to the one from [11], in that the a priori information is encapsulated by a model set K and

the a posteriori information consists of frequency response measurements (possibly nonuniformly

spaced, as in [1]), while the objective is to establish performance bounds and devise algorithms for

the recovery of transfer functions F . By recovering F , we mean here approximating it in full (i.e.,

identifying) in the context of H2 or evaluating a point value F (ζ0) (i.e., estimating) in the context

of H∞ — in fact, as in [3], we replace H∞ by a subspace known as the disc algebra to avoid certain

technical difficulties. The novelty of our setting lies in the model set K: whereas the model set of

[11] can be viewed as an intersection K = ∩n≥0Kn of approximation sets, we focus here on a single

approximation set Kn chosen as model set. This slight modification of the framework allows us

to construct identification algorithms that are optimal, not just near-optimal. In addition, these

optimal algorithms turn out to also be linear algorithms.

The structure of this article is as follows. In Section 2, we formulate precisely the problem we

are considering, we introduce the approximability model, and we describe some optimal-recovery

results that have recently emerged. In Section 3, we zoom in on results about Hilbert spaces and

adapt them to the identification of transfer functions in H2, leading to a matrix-analytic method

for the construction of an optimal algorithm and the determination of the optimal performance. In

the case of data gathered at equispaced points on inner circles, we also find the exact value of the

optimal performance in terms of the number m of observations and we remark that it is independent

of the dimension n of the polynomial space underlying the approximability model. In Section 4,

we turn to results about quantities of interest in Banach spaces and adapt them to the optimal

evaluation of transfer functions in the disc algebra, leading to a convex-optimization method for

the construction of an optimal algorithm and the determination of the optimal performance. In the

case of data gathered at equispaced points on the torus, we also show how the optimal performance
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behaves in terms of m and n. Section 5 concludes with some perspective on further research.

Finally, an appendix collects some that have been delayed to keep the flow of the main text going.

2 Problem Formulation

In its most abstract form, the scenario we are considering in the rest of this article involves unknown

objects F from a normed space X which are acquired through observational data

(1) yk = `k(F ), k = 1, . . . ,m,

where `1, . . . , `m ∈ X ∗ are known linear functionals. The perfect accuracy of the acquisition process

is of course an idealization. For brevity, we shall write y = L(F ) ∈ Cm. Discarding some of the

`k’s if necessary, we may assume that the operator L : X → Cm has full range. The task at hand

consists in making use of the data y to approximate F , or merely to evaluate a quantity of interest

Q(F ), where Q is a linear map from X into another normed space Y — typically Y = C. There is

also an a priori knowledge about F , often conveyed by the assumption that F belongs to a certain

model set K ⊆ X . The feasibility of the task is assessed in a worst-case setting via the quantity

(2) Eopt(K,L, Q) := inf
A:Cm→Y

sup
F∈K
‖Q(F )−A(L(F ))‖Y .

An optimal algorithm (relative to the model set K) is a map Aopt from Cm into Y for which the

infimum is achieved.

In system identification, the standard objects are transfer functions belonging to the Hardy space

X = H2(D) or X = H∞(D) relative to the open unit disk D := {z ∈ C : |z| < 1}. We recall that

the Hardy spaces Hp(D) are defined for 1 ≤ p ≤ ∞ by

(3) Hp(D) :=
{
F is analytic on D and ‖F‖Hp < +∞

}
,

where the Hp-norms of F (z) =
∑∞

n=0 fnz
n are given for p = 2 and p =∞ by

‖F‖H2 := sup
r∈[0,1)

[
1

2π

∫ 2π

0
|F (reiθ)|2dθ

]1/2
=

[ ∞∑
n=0

|fn|2
]1/2

,(4)

‖F‖H∞ := sup
r∈[0,1)

sup
θ∈[−π,π]

|F (reiθ)| = sup
|z|=1
|F (z)|.(5)

The last equality in (5) does not imply that functions in H∞(D) are well defined on the torus

T := {z ∈ C : |z| = 1}. To bypass this peculiarity, instead of the whole Hardy space H∞(D),

we shall work within the subspace consisting of functions that are continuous on T. This space is

called the disc algebra and is denoted A(D).
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Concerning the acquisition process, although our considerations are valid for any linear functionals

`1, . . . , `m, we shall concentrate in this initial work on the situation commonly encountered in

system identification where `1, . . . , `m are point evaluations at some ζ1, . . . , ζm located in the disc

or on the torus. It is worth recalling that the point evaluation defined at some ζ ∈ C by

(6) eζ(F ) := F (ζ), F ∈ X ,

is well defined for |ζ| ≤ 1 when X = A(D), but only for |ζ| < 1 when X = H2(D). Its Riesz

representer Eζ ∈ H2(D), characterized by the identity eζ(F ) = 〈F,Eζ〉H2 for all F ∈ H2(D), is the

Cauchy kernel given by

(7) Eζ(z) :=
1

1− ζz
, |z| < 1.

We also point out that, in A(D), the dual norm of a point evaluation at ζ ∈ C, |ζ| ≤ 1, is

(8) ‖eζ‖A∗ = 1,

where ‖eζ‖A∗ ≥ 1 follows e.g. from eζ(1) = 1 and where ‖eζ‖A∗ ≤ 1 holds because, for any

F ∈ A(D), one has |F (ζ)| ≤ ‖F‖H∞ by the maximum modulus theorem.

As for the model, a popular representation of the a priori information proposed in [11] prevails.

Given ρ > 1 and M > 0, it in fact involves two models sets, KH2 and KH∞ , both of them consisting

of functions F that are analytic on the disc Dρ := {z ∈ C : |z| < ρ} and that satisfy, respectively,

‖F (ρ ·)‖H2 =

[ ∞∑
n=0

|fn|2ρ2n
]1/2

≤M,(9)

‖F (ρ ·)‖H∞ = sup
|z|=ρ
|F (z)| ≤M.(10)

These model sets are closely related (see the appendix for the precise statement and its justification)

to the model sets given, for X = H2(D) or X = H∞(D), by

(11)
⋂
n≥0
{F ∈ X : distX (F,Pn) ≤ εn} ,

where Pn denotes the space of polynomials of degree at most n − 1 and where εn = Mρ−n (with

constants ρ > 1 andM > 0 differing from the ones in (9)-(10)). In the rest of this article, we consider

the model sets obtained by overlooking the intersection and focusing on single sets associated with

fixed n’s. In this situation, we will be able to produce optimal algorithms in the sense of (2). As we

will realize, these optimal algorithms are in fact linear maps1. Our method leverages recent results

described next. Strictly speaking, they were established in [2, 10, 9] for the real setting only —

their validity for the complex setting is justified in the appendix.

1In the case K = H2(D), the optimal algorithm over an ellipsoidal model set such as the one described by (9) is

linear, too. It is a variant of the minimal-norm interpolation presented in Section 5.3. of [13]
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Inspired by parametric PDEs, the authors of the articles [2, 10, 9] emphasized approximation

properties and considered the model sets

(12) KX (ε,V) := {F ∈ X : distX (F,V) ≤ ε}

relative to a normed space X , a subspace V of X , and a parameter ε > 0. As a summary of general

results for the full approximation problem where Q = Id (see [10] for details), we underline that

(i) an important role is played by an indicator of the compatibility of the acquisition process and

the model (as represented by the spaces ker(L) and V, respectively), namely by

(13) µX (ker(L),V) := sup
F∈ker(L)

‖F‖X
distX (F,V)

;

(ii) the optimal performance over the model set KX (ε,V) is essentially characterized by this

quantity, since

(14) µX (ker(L),V) ε ≤ Eopt(KX (ε,V),L, I) ≤ 2µX (ker(L),V) ε;

(iii) the map A′ : Cm → X defined independently of ε > 0 by

(15) A′(y) := argmin
F∈X

distX (F,V) subject to L(F ) = y

provides a near-optimal algorithm (though not necessarily a practical one) in the sense that

(16) sup
F∈KX (ε,V)

‖F −A′(L(F ))‖X ≤ 2µX (ker(L),V) ε.

It is worth noting that µX (ker(L),V) decreases when observations are added, as ker(L) shrinks, and

increases when the space V is enlarged, as distX (F,V) becomes smaller. In fact, µX (ker(L),V) =∞
when n := dim(V) > m since then one can find F ∈ ker(L) ∩ V. Thus, we assume that n ≤ m

throughout. The articles [2] and [9] improved the results (i)-(ii)-(iii) in two specific situations.

Precisely, [2] considered the full approximation problem when X is a Hilbert space, while [9] dealt

with an arbitrary normed space X but placed the focus on quantities of interest Q that are linear

functionals. Our objective consists in adapting and supplementing these contributions for the

spaces X = H2(D) and X = A(D), which is done in Section 3 and Section 4, respectively. More

precisely, our novel contribution consists, for the case of H2(D), in a slight but computation-

ready variation on the result of [2] (Theorem 1) and in the exact determination of the indicator

µH2(ker(Lζ),Pn) when ζ1, . . . , ζm are equispaced points on an inner circle (Proposition 2), and for

the case of A(D), in a slight but appropriate extension of the result of [9] (Theorem 3) and in the

asymptotic determination of the indicator µA(ker(Lζ),Pn) when ζ1, . . . , ζm are equispaced points

on the torus (Proposition 5).
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3 Optimal Identification in H2(D)

As was just mentioned, the results (i)-(ii)-(iii) can be enhanced when X is a Hilbert space, which is

the case of the Hardy space H2(D). To present the enhancement provided by [2], we let (V1, . . . , Vn)

denote an orthonormal basis for the subspace V of the Hilbert space X and L1, . . . , Lm ∈ H2(D)

denote the Riesz representers of the linear functionals `1, . . . , `m ∈ X ∗ — recall that they are

characterized by

(17) `k(F ) = 〈F,Lk〉H2 , k = 1, . . . ,m.

Concerning (iii), it was shown that the algorithm of (15) is not just near optimal, but genuinely

optimal. It can in fact be written as the linear map Aopt : Cm → X given by

(18) Aopt(y) = V ?
y +Wy − PW(V ?

y ), V ?
y = argmin

V ∈V
‖Wy − PW(V )‖X ,

where PW is the orthogonal projector onto the space W := span{L1, . . . , Lm} and Wy denotes the

element ofW satisfying `k(Wy) = yk for all k = 1, . . . ,m (so that Wy = PW(F ) if y = L(F ) for some

F ∈ X ). Concerning (ii), the optimal performance over KX (ε,V) is then completely characterized

by a sharpening of (14) to

(19) Eopt(KX (ε,V),L, I) = µX (ker(L),V) ε.

Concerning (i), the compatibility indicator introduced in (13) becomes fully computable as

(20) µX (ker(L),V) =
1

σmin(G̃)
,

where σmin(G̃) is the smallest positive singular value of the cross-Gramian matrix G̃ ∈ Cm×n relative

to the orthonormal basis (V1, . . . , Vn) for V and to an orthonormal basis (L̃1, . . . , L̃m) for W. The

entries of this matrix are

(21) G̃k,j := 〈Vj , L̃k〉, k = 1, . . . ,m, j = 1, . . . , n.

3.1 Optimal performance and algorithm

When turning to the implementation of these results for the Hardy space H2(D), a difficulty arises

from the fact that orthonormal bases for W are not automatically available. A Gram–Schmidt

orthonormalization of (L1, . . . , Lm) is not ideal, because calculating inner products in H2 is not

exact (if performed either as contour integrals or as inner products of infinite sequences). We are

going to present a more reliable method of implementation, based only on matrix computations

and relying on data directly available to the users. These data consist of two matrices G ∈ Cm×n

and H ∈ Cm×m. The first one, with entries

(22) Gk,j := `k(Vj), k = 1, . . . ,m, j = 1, . . . , n,
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is simply the cross-Gramian matrix relative to (V1, . . . , Vn) and to (L1, . . . , Lm), in view of the

identity `k(Vj) = 〈Vj , Lk〉H2 . The second one, with entries

(23) Hk,j := `k(Lj), k, j = 1, . . . ,m,

is the Gramian matrix relative to (L1, . . . , Lm), in view of the identity `k(Lj) = 〈Lj , Lk〉H2 .

Once the matrices G and H are set, we can make very explicit the optimal performance of system

identification in H2 for the approximability model relative to a subspace V, as well as an algorithm

achieving this optimal performance. This is the object of the theorem below — to reiterate, it is a

variation on a result of [2] which advantageously lends itself more easily to practical implementation.

Theorem 1. With G ∈ Cm×n and H ∈ Cm×m defined in (22) and (23), one has

(24) µH2(ker(L),V) =
1

λmin(G∗H−1G)1/2
.

Moreover, with c? = (G∗H−1G)−1G∗H−1y and d? = H−1(y − Gc?), the map Aopt : Cm → H2(D)

defined by

(25) Aopt(y) =
n∑
j=1

c?jVj +
m∑
k=1

d?kLk

is an optimal algorithm in the sense that

(26) sup
F∈KH2

(ε,V)
‖F −Aopt(L(F ))‖H2 = inf

A:Cm→H2

sup
F∈KH2

(ε,V)
‖F −A(L(F ))‖H2 ,

with the value of the latter being µH2(ker(L),V) ε.

Proof. Since the Gramian matrix H is positive definite, it has an eigenvalue decomposition

(27) H = UDU∗,

where U ∈ Cm×m is a unitary matrix and D = diag[d1, . . . , dm] ∈ Cm×m is a diagonal matrix with

positive entries. It is routine to verify that the functions L̃1, . . . , L̃m ∈ H2(D) defined by

(28) L̃k =
1√
dk

m∑
j=1

Uj,kLj , k = 1, . . . ,m,

form an orthonormal basis forW. It is also easy to verify that the cross-Gramian matrix G̃ ∈ Cm×n

relative to (V1, . . . , Vn) and to (L̃1, . . . , L̃m) is then expressed as

(29) G̃ = D−1/2U∗G.
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In turn, we derive that

(30) G̃∗G̃ = G∗H−1G.

The first part of the theorem, namely (24), is now a consequence of (20). For the second part of

the theorem, by virtue of (18), our strategy is simply to determine in turn Wy, V
?
y , and PW(V ?

y ).

To start with, it is readily checked, taking inner products with L1, . . . , Lk, that

(31) Wy =
m∑
k=1

(H−1y)kLk.

With the othonormal basis (L̃1, . . . , L̃m) for W introduced in (28), the easily verifiable change-of-

basis formula

(32) W =
m∑
k=1

ckLk ⇐⇒ W =
m∑
k=1

(D1/2U∗c)kL̃k

yields the alternative representation

(33) Wy =
m∑
k=1

(D−1/2U∗y)kL̃k.

Next, for an arbitrary function V =
∑n

j=1 cjVj ∈ V, we observe that

(34) PW(V ) =

m∑
k=1

〈V, L̃k〉L̃k =

m∑
k=1

n∑
j=1

cj〈Vj , L̃k〉L̃k =

m∑
k=1

(G̃c)kL̃k.

It follows from (33) and (34) that

(35) ‖Wy − PW(V )‖2H2
=

m∑
k=1

|(D−1/2U∗y)k − (G̃c)k|2 = ‖D−1/2U∗y − G̃c‖22.

Therefore, the minimizer V ?
y ∈ V of this expression takes the form

(36) V ?
y =

n∑
j=1

c?jVj , c? = G̃†D−1/2U∗y,

where G̃† = (G̃∗G̃)−1G̃∗ is the Moore–Penrose pseudo-inverse of G̃. According to (29), we easily

derive that the coefficient vector c? is indeed

(37) c? = (G∗H−1G)−1G∗H−1y.

Finally, in view of (34) and (32), we obtain

(38) PW(V ?
y ) =

m∑
k=1

(G̃c?)kL̃k =
m∑
k=1

(UD−1/2G̃c?)kLk =
m∑
k=1

(H−1Gc?)kLk.

Putting (36)-(37), (33), and (38) together in (18), we arrive at the expression announced in (25).

This completes the proof of the theorem.
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3.2 Evaluations at points on an inner circle

It is time to specify the results to our scenario of interest. In particular, keeping (11) in mind, we

fix V to be the space Pn of polynomials of degree at most n−1. It is equipped with the orthonormal

basis (V1, . . . , Vn) given by Vj(z) = zj−1, j = 1, . . . , n. Let us also consider a radius r < 1 and

suppose that the linear functionals `k, k = 1, . . . ,m, take the form

(39) `k(F ) = F (ζk) for some ζk ∈ C with |ζk| = r.

We are going to compare two situations, one where ζ1, . . . , ζm are randomly selected on the circle

of radius r and one where they are equispaced on this circle. In the latter situation, the optimal

performance of system identification in H2 can be determined explicitly.

Proposition 2. Given 0 < r < 1 and ζ1, . . . , ζm ∈ D defined by

(40) ζk = r exp

(
i
2π

m
(k − 1)

)
, k = 1, . . . ,m,

the indicator of compatibility of the acquisition process Lζ and the approximability model relative

to Pn is, for any n ≤ m,

(41) µH2(ker(Lζ),Pn) =
1√

1− r2m
.

Proof. We shall prove the stronger statement that

(42) G∗H−1G = (1− r2m)In,

which clearly implies the announced result by taking (24) into account. To this end, we notice that

the entries of the matrix G ∈ Cm×n are

(43) Gk,j = Vj(ζk) = rj exp

(
i
2π

m
(k − 1)(j − 1)

)
, k = 1, . . . ,m, j = 1, . . . , n,

and, in view of the form (7) of the representer Lj = Eζj , that the entries of the matrix H ∈ Cm×m

are

(44) Hk,j = Lj(ζk) =
1

1− ζjζk
=

1

1− r2 exp
(
i2π(k−j)m

) , k = 1, . . . ,m, j = 1, . . . ,m.

Since H is a circulant matrix, it ‘diagonalizes in Fourier’, meaning that the matrix U in the

eigendecomposition (27) has columns u(1), . . . , u(m) ∈ Cm given by

(45) u(k) =
1√
m


1

exp(i2π(k − 1)/m)
...

exp(i2π(k − 1)(m− 1)/m)

 .
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The eigenvalues d1, . . . , dm are found through the calculation

(Hu(k))k′ =
m∑
j=1

1

1− r2 exp(i2π(k′ − j)/m)

exp(i2π(k − 1)(j − 1))√
m

(46)

=
m∑
j=1

exp(i2π(k − 1)(j − k′)/m)

1− r2 exp(i2π(k′ − j)/m)
(u(k))k′ ,

so that, after the change of summation index h = k′ − j, the eigenvalue dk appears to be

dk =
m∑
h=1

exp(−i2π(k − 1)h/m)

1− r2 exp(i2πh/m)
=

m∑
h=1

exp(−i2π(k − 1)h/m)
∞∑
t=0

r2t exp(i2πth/m)(47)

=
∞∑
t=0

r2t
m∑
h=1

exp(i2π(t− k + 1)h/m) =
∞∑
t=0

r2tm1{t∈k−1+mN}

= m(r2(k−1) + r2(k−1+m) + r2(k−1+2m) + · · · ) =
mr2(k−1)

1− r2m
.

Thus, we have now made explicit the eigendecomposition of H as

(48) H =
m

1− r2m
U diag[1, r2, . . . , r2(m−1)]U∗, U =

[
u(1)| · · · |u(m)

]
.

Besides, we easily observe that the expression (43) reads, in matrix form,

(49) G =
√
mŨ diag[1, r, . . . , rn−1], Ũ =

[
u(1)| · · · |u(n)

]
.

At this point, it is an easy matter to verify that (48) and (49) imply (42).

In the case of observations gathered at equispaced points, Proposition 2 shows that the indicator

µH2(ker(Lζ),Pn) is independent of the dimension n of V = Pn. Keeping in mind that the value

of ε = εn appearing in (19) decreases with n (e.g. as εn = Mρ−n for the model set imposed

by (9)-(11)), the optimal performance becomes most favorable when n as large as possible, i.e.,

when n = m. This differs from the typical situation where a tradeoff is to be found between

the increase of µH2(ker(Lζ),Pn) and the decrease of εn. Figure 1 illustrates numerically the fact

that µH2(ker(Lζ),Pn) generally increases with n. The experiments that generated this figure can

be reproduced by downloading from the authors’ webpages the matlab files accompanying this

article.2

Remark. The choice n = m implies the existence of some Am : Cm → H2(D) yielding the estimate

(50) ‖F −Am(Lζ(F ))‖H2 ≤
1√

1− r2m
distH2(F,Pm) for all F ∈ H2(D),

2To compute the H2-error between functions F =
∑∞
j=1 bjVj and F̃ =

∑n
j=1 cjVj +

∑m
k=1 dkLk, we used the

fact that ‖F − F̃‖2H2
= ‖F‖2H2

+ ‖F̃‖2H2
− 2 Re〈F, F̃ 〉, together with ‖F̃‖2H2

= ‖c‖22 + 〈d,Hd〉 + 2 Re〈c,Gd〉 and

〈F, F̃ 〉 = 〈b1:n, c〉+
∑m
k=1 dk`k(F ).
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Figure 1: Behavior of the indicator µH2(ker(Lζ),Pn) and of the identification error

‖F −Aopt(Lζ(F ))‖H2 when the points ζ1, . . . , ζm are chosen on a circle of radius r < 1.

where the factor 1/
√

1− r2m is bounded independently of m by 1/
√

1− r2. As it turns out, the map

F 7→ Am(Lζ(F )) is just the operator Pm : H2(D)→ Pm of polynomial interpolation at ζ1, . . . , ζm:

indeed, thanks to Lζ(Pm(F )) = Lζ(F ), (50) applied to Pm(F ) ∈ Pm instead of F reveals that

Am(Lζ(F )) = Pm(F ). In short, the operator Pm : H2(D) → Pm of polynomial interpolation at m

equispaced points on the circle of radius r < 1 acts as an operator of near-best approximation from

Pm relative to H2. As pointed out by a referee, this specific observation can be obtained without

relying on the preceding machinery. Indeed, the expression

(51) Pm(G)(z) =

m−1∑
`=0

( ∞∑
t=0

g`+tmr
tm
)
z` whenever G(z) =

∞∑
`=0

g`z
`

is easily verified by checking that Pm(G)(ζk) = G(ζk) for all k = 1, . . . ,m and that Pm(Vj) = Vj
for all j = 1, . . . ,m. Then an application of Cauchy–Schwarz inequality gives

(52) ‖Pm(G)‖H2 ≤
1√

1− r2m
‖G‖H2 .

The inequality (50) finally follows by taking G = F − V where V ∈ Pm is chosen such that

‖F − V ‖H2 = distH2(F,Pm). We emphasize that this short argument for (50) incidentally justifies

that µH2(ker(Lζ),Pm) ≤ 1/
√

1− r2m, according to the leftmost inequality in (14), and in turn that

µH2(ker(Lζ),Pn) ≤ 1/
√

1− r2m for all n ≤ m.

11
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4 Optimal Estimation and Identification in A(D)

As mentioned at the end of Section 2, the results (i)-(ii)-(iii) can also be enhanced when X is

an arbitrary normed space and one does not target the full approximation of F ∈ X but only

the estimation of a quantity of interest Q(F ) for some linear functional Q ∈ X ∗. To present the

enhancement provided in [9], we let (V1, . . . , Vn) denote a basis for the subspace V of X — this

time, it does not need to be an orthonormal basis. Concerning (iii), an algorithm which is optimal

over the approximation set KX (ε,V) was uncovered: it consists in outputting

(53) Aopt(y) =

m∑
k=1

a?kyk, y ∈ Cm,

where the vector a? ∈ Cm is obtained as a solution of the optimization problem

(54) minimize
a∈Cm

∥∥∥∥Q− m∑
k=1

ak`k

∥∥∥∥
X ∗

subject to
m∑
k=1

ak`k(Vj) = Q(Vj) for all j = 1, . . . , n.

Note that the vector a? is computed offline once and for all and is subsequently used for each fresh

occurrence of observational data y via the rule (53), thus providing an optimal algorithm which is

incidentally a linear functional. Note also that the knowledge of ε is unnecessary to produce the

vector a?. Concerning (ii), or rather its alteration to incorporate quantities of interest, the optimal

performance over KX (ε,V) is again completely characterized by

(55) Eopt(KX (ε,V),L, Q) = µX (ker(L),V, Q) ε,

where the indicator of compatibility of the acquisition process and the model now becomes

(56) µX (ker(L),V, Q) := sup
F∈ker(L)

|Q(F )|
distX (F,V)

.

Concerning (i), the value of this indicator is in fact obtained as the minimum of the optimization

program (54). At first sight, this program seems intractable because the dual norm is not auto-

matically amenable to numerical computations. The purpose of this section is to show that the

optimization can be performed effectively when the acquisition functionals are evaluations at points

on the torus T and when X is the disc algebra A(D) endowed with the H∞-norm. It could also be

performed when X = H2(D) — we do not give details about this case, since it is essentially covered

in [9, Subsection 5.2], which is dedicated to reproducing kernel Hilbert spaces and hence applies to

H2(D).

4.1 Optimal performance and algorithm

The key to transforming (54) into a practically solvable optimization program when X = A(D)

consists in reformulating the X ∗-norm of a linear combination of linear functionals as a workable

12
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expression of its coefficients. With acquisition functionals being evaluations at points on the torus,

this reformulation is made possible by Rudin–Carleson theorem. It provides access not only to the

optimal performance of system identification in A(D) for the approximability model relative to a

subspace V, but also to an algorithm achieving this optimal performance. This is the object of the

theorem below — to reiterate, it extends a result of [9] from the space of continuous functions to

the more involved disc algebra.

Theorem 3. Given distinct points ζ1, . . . , ζm ∈ T and a quantity of interest taking the form

Q(F ) = F (ζ0) for some ζ0 ∈ T \ {ζ1, . . . , ζm}, consider the `1-minimization problem

(57) minimize
a∈Cm

m∑
k=1

|ak| subject to
m∑
k=1

akVj(ζk) = Vj(ζ0) for all j = 1, . . . , n.

If a? ∈ Cm denotes a solution to this problem, then

(58) µA(ker(Lζ),V, Q) = 1 +

m∑
k=1

|a?k|,

and the linear functional Aopt : Cm → C defined by

(59) Aopt(y) =

m∑
k=1

a?kyk, y ∈ Cm,

is an optimal algorithm over KA(ε,V) in the sense that

(60) sup
F∈KA(ε,V)

|Q(F )−Aopt(Lζ(F ))| = inf
A:Cm→C

sup
F∈KA(ε,V)

|Q(F )−A(Lζ(F ))|,

with the value of the latter being µA(ker(Lζ),V, Q) ε.

Proof. The argument is based on the remark that, for any a ∈ Cm,

(61)

∥∥∥∥eζ0 − m∑
k=1

akeζk

∥∥∥∥
A∗

= 1 +

m∑
k=1

|ak|.

The ‘≤’-part follows from the triangle inequality and the observation (8). As for the ‘≥’-part, since

the set {ζ0, ζ1, . . . , ζm} ⊆ T is closed and have measure zero, Rudin–Carleson theorem (see e.g. [13,

Theorem 2.3.2]) ensures that one can find F ∈ A(D) such that

(62) ‖F‖H∞ = 1, F (ζ0) = 1 =: w0, F (ζk) = − ak
|ak|

=: wk, k = 1, . . . ,m,

which in turn implies that

(63)

∥∥∥∥eζ0 − m∑
k=1

akeζk

∥∥∥∥
A∗
≥ F (ζ0)−

m∑
k=1

akF (ζk) = 1 +

m∑
k=1

|ak|.

It is then clear from (61) that the optimization program (54) reformulates as (57), omitting the

additive constant 1. The announced results are now restatements of (53)-(54) and of the announced

equality between the indicator (56) and the minimum of the optimization program.

13
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Remark. The argument (62) justifying the identity (61) would not hold if ζ0, ζ1, . . . , ζm were all

inside the unit circle. Indeed, by Nevanlinna–Pick theorem (see e.g. [13, Theorem 2.1.6] or [5,

Theorem 2.3.4]), it would mean that the matrix Q ∈ C(m+1)×(m+1) with entries

(64) Qk,j =
1− wjwk
1− ζjζk

, k, j = 0, 1, . . . ,m,

is positive semidefinite. This cannot occur because its diagonal entries are all zero, hence its trace

equals zero, so Q itself would be the zero matrix.

Remark. Theorem 3 can effortlessly be extended to quantities of interest taking the form of a

weighted sum of evaluations at points on T. With a little more work, it could also be extended

to quantities of interest of the form Q(F ) = F (s)(ζ) for some ζ ∈ D. The details are left to the

reader. They essentially amount to justifying the ‘≥’-part of an analog of (61). This is done via a

limiting argument which involves a discretization of the Cauchy formula for F (s)(ζ) and allows for

Rudin–Carleson theorem to be applied.

4.2 Evaluations at points on the unit circle

In this subsection, general considerations are again particularized to our situation of interest where

we fix V to be the space of polynomials of degree at most n− 1. In this case, and with acquisition

functionals being evaluations at equispaced points on the torus T, we are able to determine quite

explicitly the optimal performance of system identification in A(D). Underlying the argument is

a crucial observation about µA(ker(Lζ),V) valid regardless of the space V and of the evaluation

points ζ1, . . . , ζm ∈ T. This observation is isolated below.

Lemma 4. Given a finite-dimensional subspace V of A(D) and distinct points ζ1, . . . , ζm ∈ T,

(65) µA(ker(Lζ),V) = 1 + sup
V ∈V

‖V ‖H∞
max

k=1,...,m
|V (ζk)|

.

Proof. In order to establish (65), we first recall that

(66) µA(ker(Lζ),V) = sup
F (ζ1)=···=F (ζm)=0

‖F‖H∞
distH∞(F,V)

.

To prove the ‘≤’-part of (65), we remark that, if F ∈ A(D) satisfies F (ζ1) = · · · = F (ζm) = 0 and

V ∈ V satisfies ‖F − V ‖H∞ = distH∞(F,V), then

‖F‖H∞
distH∞(F,V)

=
‖F‖H∞

‖F − V ‖H∞
≤ 1 +

‖V ‖H∞
‖F − V ‖H∞

≤ 1 +
‖V ‖H∞

max
k=1,...,m

|(F − V )(ζk)|
(67)

= 1 +
‖V ‖H∞

max
k=1,...,m

|V (ζk)|
,

14
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and the required inequality immediately follows. As for the ‘≥’-part, let η denote the maximum

appearing in (65), and let us select V ∈ V with max
k=1,...,m

|V (ζk)| = 1 and ‖V ‖H∞ = η. We then pick

z ∈ T such that |V (z)| = η — we may assume z 6∈ {ζ1, . . . , ζm}, otherwise we can slightly perturb

it and replace η by η − ε for an arbitrary small ε > 0. By Rudin–Carleson theorem, we can find

H ∈ A(D) such that

(68) ‖H‖H∞ = 1, H(z) = − V (z)

|V (z)|
, H(ζk) = V (ζk), k = 1, . . . ,m.

Then, since F = V −H ∈ A(D) satisfies F (ζ1) = · · · = F (ζm) = 0, we have

µA(ker(Lζ),V) ≥ ‖F‖H∞
distH∞(F,V)

≥ ‖V −H‖H∞
‖H‖H∞

≥ |V (z)−H(z)| = |V (z)|
(

1 +
1

|V (z)|

)
(69)

= 1 + η.

This is the required inequality.

With Lemma 4 at our disposal, it becomes almost immediate to establish a result about optimal

identification in A(D) for acquisition functionals being evaluations at equispaced points. There is

a direct repercussion on optimal estimation in A(D) — the setting of Theorem 3 — since

(70) µA(ker(Lζ),V) = sup
ζ0∈T

µA(ker(Lζ),V, eζ0).

The awaited result about optimal identification reads as follows.

Proposition 5. Given points ζ1, . . . , ζm ∈ T defined by

(71) ζk = exp

(
i
2π

m
(k − 1)

)
, k = 1, . . . ,m,

the indicator of compatibility of the acquisition process Lζ and the approximability model relative

to Pn satisfies

(72) µA(ker(Lζ),Pn) = 2 + κ(m,n), with κ(m,n) � ln

(
m

m− n+ 1

)
.

Proof. We invoke the result of [14], which precisely says that

(73) sup
V ∈Pn

‖V ‖H∞
max

k=1,...,m
|V (ζk)|

= 1 + κ(m,n), with κ(m,n) � ln

(
m

m− n+ 1

)
.

It remains to take Lemma 4 into account for the proof to be complete.

To close this subsection, we present in Figure 2 a brief numerical illustration comparing the optimal

estimation algorithms of Theorem 3 for equispaced points and random points on the torus. The

experiment is also included in the reproducible matlab file.
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Figure 2: Behavior of the indicator µA(ker(Lζ),Pn, eζ0) and of the estimation error

|F (ζ0)−Aopt(Lζ(F ))| when the points ζ0, ζ1, . . . , ζm are chosen on the torus.

5 Conclusion

In this article, we formulated an optimal system identification problem by expressing the a priori

information via approximability properties. To the best of our knowledge, this is the first work in

this direction. We partially solved our problem by devising methods for the construction of optimal

algorithms, which turn out to be linear algorithms. Yet, our contribution is certainly an exploratory

work that should be extended in several directions. We highlight a few possible directions below.

Measurement types. We have mostly considered frequency responses obtained as point evaluations

of transfer functions and we have obtained sharp results when the evaluation points are equispaced.

Our underlying method, however, is valid for any type of linear measurements, so it is worth

studying its repercussions for other relevant measurement scenarios, including (i) impulse-response

samples, (ii) convolutions of the impulse response with (pseudorandom) input signals, and (iii)

pairs of input-output time series.

Measurements quality. The initial results presented here were based on the assumption that the

observational data can be acquired with perfect accuracy. In realistic situations, errors always

occur in the acquisition process. It is possible to formulate an optimal-recovery problem taking

this inaccuracy into account (in fact, such a problem can be transformed onto a standard optimal-

recovery problem, at least formally — see [12] for details). In the context of system identification,

it would be valuable to design implementable algorithms that are optimal in this inaccurate setting.

MIMO systems. The focus in this preliminary work was put on single-input-single-output (SISO)

systems. A step further would consist in treating multi-input-multi-output (MIMO) systems with-

out simply applying our techniques to each input-output pair separately, as this becomes inefficient

for large-scale systems.
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Appendix: Proofs of Essential Results

In this section, we fully justify some statements appearing in the text but not yet established, namely

the relation between (9)-(10) and (11), as well as the validity in the complex setting of results about

optimal identification in Hilbert spaces [2] and optimal estimation in Banach spaces [9]. We start

with how (11) connects to the descriptions (9)-(10) of the models put forward in [11].

Proposition 6. With X denoting either H2(D) or A(D), the following properties are equivalent:

there exist ρ > 1 and M > 0 such that ‖F (ρ ·)‖X ≤M ;(74)

there exist ρ > 1 and M > 0 such that distX (F,Pn) ≤Mρ−n for all n ≥ 0.(75)

Proof. We write F (z) =
∑∞

n=0 fnz
n throughout the proof. We first establish the equivalence in the

case X = H2(D). Let us assume that (74) holds, i.e., that
∑∞

n=0 |fn|2ρ2n ≤M2 for some ρ > 1 and

M > 0. In particular, we have |fn|2 ≤M2ρ−2n for all n ≥ 0. It follows that, for all n ≥ 0,

(76) distH2(F,Pn)2 =

∞∑
k=n

|fk|2 ≤M2
∞∑
k=n

ρ−2k =
M2

1− ρ−2
ρ−2n,

hence (75) holds with a change in the constant M . Conversely, let us assume that (75) holds, i.e.,

that there are ρ > 1 and M > 0 such that
∑∞

k=n |fk|2 ≤ M2ρ−2n for all n ≥ 0. In particular, we

have |fn|2 ≤M2ρ−2n for all n ≥ 0. Then, picking ρ̃ ∈ (1, ρ), we derive that

(77)
∞∑
n=0

|fn|2ρ̃ 2n ≤M2
∞∑
n=0

(ρ̃/ρ)2n =
M2

1− (ρ̃/ρ)2
,

hence (74) holds with a change in both ρ and M .

We now establish the equivalence in the case X = A(D). Let us assume that (74) holds, i.e., that

sup|z|=ρ |F (z)| ≤ M for some ρ > 1 and M > 0. This implies that the Taylor coefficients of F

satisfy, for any k ≥ 0,

(78) |fk| =
∣∣∣∣ 1

2πi

∫
|z|=ρ

F (z)

zk+1
dz

∣∣∣∣ ≤ 1

2π
× M

ρk+1
× 2πρ = Mρ−k.

Considering P ∈ Pn defined by P (z) :=
∑n−1

k=0 fkz
k, we obtain

(79) distX (F,Pn) ≤ ‖F − P‖H∞ = sup
|z|=1

∣∣∣∣ ∞∑
k=n

fkz
k

∣∣∣∣ ≤ ∞∑
k=n

|fk| ≤M
∞∑
k=n

ρ−k =
M

1− ρ
ρ−n,

hence (75) holds with a change in the constant M . Conversely, let us assume that (75) holds, i.e.,

that there are ρ > 1 and M > 0 such that there exists, for each n ≥ 0, a polynomial P [n] ∈ Pn
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with ‖F − P [n]‖H∞ ≤Mρ−n. For all n ≥ 0, since the coefficients in zn of F is the same as that of

F − P [n], we have

(80) |fn| =
∣∣∣∣ 1

2πi

∫
|z|=1

(F − P [n])(z)

zn+1
dz

∣∣∣∣ ≤ 1

2π
× ‖F − P [n]‖H∞ × 2π ≤Mρ−n.

Then, picking ρ̃ ∈ (1, ρ), we derive that

(81) sup
|z|=ρ̃
|F (z)| ≤

∞∑
n=0

|fn|ρ̃ n ≤M
∞∑
n=0

(ρ̃/ρ)n =
M

1− ρ̃/ρ
,

hence (74) holds with a change in both ρ and M .

We now turn to the justification for the complex setting of the results from [2] about optimal

identification in Hilbert spaces. As in [2, Theorem 2.8], these results are easy consequences of the

following statement.

Theorem 7. Let V be a subspace of a Hilbert space X and let `1, . . . , `m be linear functionals

defined on X . With a model set given by

(82) K = {f ∈ X : distX (f,V) ≤ ε},

the performance of optimal identification from some y ∈ Cm satisfies

(83) inf
A:Cm→X

sup
f∈K∩L−1(y)

‖f −A(y)‖X = µ

(
ε2 − min

f∈L−1(y)
‖f − PVf‖2X

)1/2

,

where the constant µ is defined by

(84) µ = sup
u∈ker(L)

‖u‖X
distX (u,V)

.

Proof. Let f? ∈ X be constructed from y ∈ Cm via f? := argmin
f∈X

‖f −PVf‖X subject to L(f) = y.

We shall prove on the one hand that

(85) sup
f∈K∩L−1(y)

‖f − f?‖X ≤ µ
(
ε2 − ‖f? − PVf?‖2X

)1/2
and on the other hand that, for any g ∈ X ,

(86) sup
f∈K∩L−1(y)

‖f − g‖X ≥ µ
(
ε2 − ‖f? − PVf?‖2X

)1/2
.

Justification of (85): Let us point out that f? − PVf? is orthogonal to both V and ker(L). To see

this, given v ∈ V, u ∈ U , and θ ∈ [−π, π], we notice that, as functions of t ∈ R, the expressions

‖f? − PVf? + teiθv‖2X = ‖f? − PVf?‖2X + 2tRe(e−iθ〈f? − PVf?, v〉) +O(t2),(87)

‖f?+teiθu− PV(f?+teiθu)‖2X = ‖f? − PVf?‖2X + 2tRe(e−iθ〈f? − PVf?, u− PVu〉) +O(t2),(88)
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are minimized at t = 0. Therefore Re(e−iθ〈f?−PVf?, v〉) = 0 and Re(e−iθ〈f?−PVf?, u−PVu〉) = 0

for all θ ∈ [−π, π]. This implies that 〈f?−PVf?, v〉 = 0 and 〈f?−PVf?, u−PVu〉 = 0 for all v ∈ V
and u ∈ ker(L), hence our claim. Now consider f ∈ K ∩ L−1(y). Since L(f) = y = L(f?), we can

write f = f? + u for some u ∈ ker(L). The fact that f ∈ K then yields

(89) ε2 ≥ ‖f − PVf‖2X = ‖f? − PVf? + u− PVu‖2X = ‖f? − PVf?‖2X + ‖u− PVu‖2X ,

so that

(90) distX (u,V) = ‖u− PVu‖X ≤
(
ε2 − ‖f? − PVf?‖2X

)1/2
.

It remains to take the definition of µ into account to obtain

(91) ‖f − f?‖X = ‖u‖X ≤ µdistX (u,V) ≤ µ
(
ε2 − ‖f? − PVf?‖2X

)1/2
.

Justification of (86): Let us select u ∈ ker(L) such that

(92) ‖u‖X = µdistX (u,V) and ‖f? − PVf?‖2X + ‖u− PVu‖2X = ε2.

We now consider f± := f? ± u. It is clear that f± ∈ L−1(y), and we also have f± ∈ K, since

(93) ‖f± − PVf±‖2X = ‖(f? − PVf?)± (u− PVu)‖2X = ‖f? − PVf?‖2X + ‖u− PVu‖2X = ε2.

Then, for any g ∈ X ,

sup
f∈K∩L−1(y)

‖f − g‖X ≥ max
±
‖f± − g‖X ≥

1

2

(
‖f+ − g‖X + ‖f− − g‖X

)
≥ 1

2
‖f+ − f−‖X(94)

= ‖u‖X = µ distX (u,V) = µ
(
ε2 − ‖f? − PVf?‖2X

)1/2
.

This completes the proof of the theorem.

Finally, we justify below that the result from [9] about optimal estimation in Babach spaces holds

in the complex setting, too.

Theorem 8. Let V be a subspace of a Banach space X , let `1, . . . , `m be linear functionals defined

on X , and let Q be another linear functional defined on X . With a model set given by

(95) K = {f ∈ X : distX (f,V) ≤ ε},

the performance of optimal estimation of Q satisfies

(96) inf
A:Cm→C

sup
f∈K
|Q(f)−A(L(f))| = µ ε,

where the constant µ equals the minimum of the optimization problem

(97) minimize
a∈Cm

∥∥∥∥Q− m∑
k=1

ak`k

∥∥∥∥
X ∗

subject to

m∑
k=1

ak`k(v) = Q(v) for all v ∈ V.
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Proof. Let a? ∈ Cm be a minimizer of the optimization program (97) and let ν denote the value of

the minimum. Let us also consider

(98) µ = sup
u∈U

|Q(u)|
distX (u,V)

.

We shall prove on the one hand that

(99) sup
f∈K

∣∣∣∣Q(f)−
m∑
k=1

a?k`k(f)

∣∣∣∣ ≤ ν ε,
on the other hand that, for any A : Cm → C,

(100) sup
f∈K
|Q(f)−A(L(f))| ≥ µ ε,

and we shall show as a last step that

(101) ν ≤ µ.

Justification of (99): Given f ∈ K, we select v ∈ V such that ‖f − v‖X = distX (f,V). The required

inequality follows by noticing that∣∣∣∣Q(f)−
m∑
k=1

a?k`k(f)

∣∣∣∣ =

∣∣∣∣Q(f − v)−
m∑
k=1

a?k`k(f − v)

∣∣∣∣ ≤ ∥∥∥∥Q− m∑
k=1

a?k`k

∥∥∥∥
X ∗
‖f − v‖X(102)

= ν distX (f,V) ≤ ν ε.

Justification of (100): Let us select u ∈ ker(L) such that

(103) |Q(u)| = µdistX (u,V) and distX (u,V) = ε.

Then, for any A : Cm → C, we have

sup
f∈K
|Q(f)−A(L(f))| ≥ max

±
|Q(±u)−A(0)| ≥ 1

2
(|Q(u)−A(0)|+ |Q(−u)−A(0)|)(104)

≥ 1

2
|Q(u)−Q(−u)| = |Q(u)| = µ ε.

Justification of (101): We assume that ker(L)∩ V = {0}, otherwise µ =∞ and there is nothing to

prove. We consider a linear functional λ defined on ker(L)⊕ V by

(105) λ(u) = Q(u) for all u ∈ ker(L) and λ(v) = 0 for all v ∈ V.

We then consider a Hahn–Banach extension λ̃ of λ defined on X . Because Q − λ̃ vanishes on

ker(L), we can write Q− λ̃ =
∑n

k=1 ãk`k for some ã ∈ Cm, and because λ̃ vanishes on V, we have∑m
k=1 ãk`k(v) = Q(v) for all v ∈ V. We therefore derive that

ν ≤
∥∥∥∥Q− n∑

k=1

ãk`k

∥∥∥∥
X ∗

=
∥∥λ̃∥∥X ∗ = ‖λ‖(ker(L)⊕V)∗ = sup

u∈ker(L)
v∈V

|λ(u− v)|
‖u− v‖X

(106)

= sup
u∈ker(L)
v∈V

|Q(u)|
‖u− v‖X

= sup
u∈ker(L)

|Q(u)|
distX (u,V)

= µ.

This concludes the proof of the theorem.
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