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Abstract

Covariate measurement error in nonparametric regression is a common problem in nutri-

tional epidemiology and geostatistics, and other fields. Over the last two decades, this problem

has received substantial attention in the frequentist literature. Bayesian approaches for handling

measurement error have only been explored recently and are surprisingly successful, although

the lack of a proper theoretical justification regarding the asymptotic performance of the estima-

tors. By specifying a Gaussian process prior on the regression function and a Dirichlet process

Gaussian mixture prior on the unknown distribution of the unobserved covariates, we show

that the posterior distribution of the regression function and the unknown covariates density

attain optimal rates of contraction adaptively over a range of Hölder classes, up to logarithmic

terms. This improves upon the existing classical frequentist results which require knowledge of

the smoothness of the underlying function to deliver optimal risk bounds. We also develop a

novel surrogate prior for approximating the Gaussian process prior that leads to efficient com-

putation and preserves the covariance structure, thereby facilitating easy prior elicitation. We

demonstrate the empirical performance of our approach and compare it with competitors in a

wide range of simulation experiments and a real data example.
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1 Introduction

1.1 Overview

The general formulation of a deconvolution problem assumes that the observations are the true

underlying variables contaminated with measurement error. In an errors-in-variables regression

problem, responses Yi’s are observed corresponding to evaluations of a unknown regression function

f on noise-contaminated covariates Wi’s as

Yi = f(Xi) + εi, εi ∼ N(0, σ2),

Wi = Xi + ui, ui ∼ gu, Xi ∼ p0 (i = 1, . . . , n),
(1)

where Xi’s are the underlying true covariate variables. We denote p0 as the marginal distribution

of Xi, εi as the centered Gaussian error with unknown standard deviation σ, and gu as the mea-

surement error distribution. The goal here is to recover the unknown regression function f and the

true density function p0 of the covariate distribution.

From a frequentist perspective, there is a rich literature addressing these problems. Historically,

the density deconvolution problem was first addressed in Carroll and Hall (1988); Fan (1991);

Stefanski and Carroll (1990), where it was noted that the fundamental difficulty in recovering

the true density lies in the nature of the distribution of the measurement errors, and a class

of deconvoluting kernel density estimators was proposed. Fan and Truong (1993) developed a

globally consistent deconvolution kernel type estimator in a nonparametric regression problem

and showed the optimal rate of convergence is of logarithmic order if the measurement error is

normally distributed. Ioannides and Alevizos (1997) generalized the estimator while Delaigle and

Meister (2007) extended the theory to the heteroscedastic case. Refer to a review article Delaigle

(2014) for a detailed discussion on kernel-based deconvolution estimators. Deconvolution based

on Fourier-techniques and local linear and polynomial estimators are also popular, such as simex

(simulation-extrapolation) Cook and Stefanski (1994) and Carroll et al. (1996, 1999); Delaigle et al.

(2009); Delaigle and Hall (2008); Delaigle et al. (2006); Du et al. (2011); Stefanski and Cook (1995).

On the other hand, Bayesian procedures are naturally suited for general nonparametric regres-

sion tasks due to their ability to adapt to unknown smoothness and to allow quantifications of

uncertainty. That being said, there is a relatively sparse literature on errors-in-variables problem

in a Bayesian framework, let alone any theoretical development. Berry et al. (2002) were the first

to develop a fully Bayesian procedure for the nonparametric regression problem using smooth-

ing splines and P-splines. Staudenmayer et al. (2008) used the penalized mixture of B-splines to

approximate the density and variance function in the heteroscedastic case. Sarkar et al. (2014)

proposed a semiparametric Bayesian method based on B-splines for the regression function and

in the presence of conditionally heteroscedastic measurement and regression errors. Cervone and

Pillai (2015) developed a Bayesian analysis for Gaussian processes (gp) with location errors us-

ing hybrid Monte-Carlo techniques. Although the methods have been demonstrated to be very

successful numerically, there is a clear dearth of theoretical results justifying these approaches.

1



For classical density estimation problems with no measurement error, Bayesian nonparametric

techniques including Dirichlet process Gaussian mixture model (Escobar and West, 1995; Ferguson,

1973; Lo, 1984) have demonstrated success in various applications, where the unknown density

is modeled as a mixture of normals with a Dirichlet process prior on the mixing distribution.

Flexibility and richness aside, the immense popularity of these methods can be attributed largely to

the development of sophisticated computational machinery that has made implementation of these

techniques routine in various applied problems. To illustrate further credibility of such methods,

frequentist consistency properties have also been given substantial attention in the literature and

results of the type

Ep0 [ Πn{d(p0, p) > ξn | X(n)} ]→ 0 (2)

for a sequence of ξn → 0, called posterior contraction rates, have been established, where p denotes

the unknown parameter, X(n) denotes a set of precise measurements on X, d a distance metric,

Πn{ · | X(n)} the posterior distribution given X(n), and Ep0 the expectation with respect to the

true probability density p0 of X. Such posterior convergence results are useful as they imply the

frequentist convergence rate ξn for the associated Bayes estimators. Optimal rates of posterior con-

vergence in density estimation using mixture models have been illustrated by Ghosal and van ver

Vaart (2007); Kruijer et al. (2010); Shen et al. (2013). Bayesian nonparametric density estimation

approaches, such as the Dirichlet process Gaussians mixture model, can be readily adapted to the

problem of density deconvolution from a practical point of view. In contrast, in our deconvolu-

tion context the covariate density of interest is different from the data generating density of the

noise-contaminated covariate, making our theoretical investigation of consistency properties of the

posterior substantially different and more difficult.

To the best of our knowledge, the only existing results available in the Bayesian literature are

Donnet et al. (2018); Sarkar et al. (2013). In the former papers, an adaptive optimal contraction

rate is proved in a density deconvolution problem. A formal theoretical justification for the use of

Bayesian procedures in the errors-in-variables regression problem is missing. In this paper, we pro-

pose a fully Bayesian framework for errors-in-variables regression using Gaussian process prior, and

develop a new theoretical framework for studying its frequentist properties including consistency

and the quantification of posterior convergence rates. The optimal rate in the errors-in-variables

problem with Gaussian error has been proved to be extremely slow, rendering inefficient inference

in applications. In fact, the decaying error variance plays a very important role in improving the

rate of the convergence. Such observation can be found in Fan (1992), where the measurement

error standard deviation is allowed to decrease at the certain rate (the same as the optimal rate of

the bandwidth) to enable the contraction rate of the deconvolution estimator to be as fast as that

of the ordinary density estimator.

In this paper, we show that in an errors-in-variables regression problem, when the Gaussian

error variance decreases to zero at a certain rate, under appropriate regularity conditions on the

true marginal density and regression function, the posterior distribution obtained from a suitably
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chosen hierarchical Gaussian process model with a Dirichlet process Gaussian mixture prior on the

marginal density of the covariates converges to the ground truth at their respective minimax optimal

rates, adaptively over a range of Hölder classes. By viewing density deconvolution as an inverse

problem (Knapik et al., 2011; Ray, 2013), we follow the general recipe in Theorem 3.1 of Ray (2013)

as sufficient conditions for posterior convergence in our setting. However, the work of Knapik et al.

(2011) is restricted to conjugate priors, Ray (2013) considers only periodic function deconvolution

using wavelets, and substantial technical hurdles remain. To address these challenges, we exploit

the concentration properties of frequentist estimators to construct test functions with type-I and

type-II error bounds of the type exp(−Cnε2n) for the testing problem

H0 : p = p0, vs HA : p ∈ {p : d(p, p0) > ξn}. (3)

Ray (2013) used concentration properties of thresholded wavelet based estimators based on standard

results on concentration of Gaussian priors. However, analogous results fo kernel density estimators

suited to density deconvolution problems are lacking. One of our key technical contributions is to

develop sharp concentration inequalities of the kernel density estimators to construct tests in (3).

On the computational side, although the Bayesian spline models are quite successful in practice,

the choice of knots as well as the number of basis functions are critical to obtain good empirical per-

formance. This stimulates the development of other Bayesian approaches for modeling the unknown

function of interest such as Gaussian process regression. Gaussian processes are routinely used for

function estimation in a Bayesian context. However, their use in the context of measurement error

in nonparametric regression models is limited, since the unobserved values of covariates are involved

in the prior covariance matrix of Gaussian process and is no longer conditionally independent given

the data. To alleviate this issue in errors-in-variables regression problem, we develop an approx-

imation to the Gaussian process as a prior for the unknown regression function. The Gaussian

process surrogate is computationally efficient as it avoids the need to do matrix inversion. It also

preserves the covariance matrix of a Gaussian process, thereby facilitating easy prior elicitation.

In addition to the standard hyperparameters of a Gaussian process that control the smoothness of

the sample paths, the Gaussian process surrogate contains a truncation parameter. Our result on

the accuracy of such an approximation suggests that inference on the regression function is robust

to the choice of the truncation parameter as long as it is chosen to be appropriately large. Hence

the approximation retains all the potential advantages of a Gaussian process.

1.2 Review of nonparametric regression with errors-in-variables

Consider the regression model (1) with errors in variables, where {(Yi,Wi) (i = 1, . . . , n)} are inde-

pendent and identical random variables. Recall that Yi’s denote the observed responses and Wi’s

are contaminated covariates. We assume that Yi is conditionally independent of Wi given Xi, for

i = 1, . . . , n, where the Xi’s denote the unknown covariates having density p0. The error density gu

considered in the existing literature (Fan and Truong, 1993) can be classified into two major types:

the ordinary-smooth distributions whose characteristic function has polynomial decay, such as the
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gamma and double-exponential distribution; and the super-smooth distributions whose character-

istic function has exponential decay such as the Gaussian and Cauchy. The measurement error

distribution gu controls the rate of convergence of the estimators. It is well known that in absence

of any replicated proxy per data-point, the optimal rate for a super-smooth error distribution is

only of the logarithmic order, rendering the estimators to be highly inefficient for practical pur-

poses (Fan and Truong, 1993). In cases where the error distribution remains unknown, it can be

estimated from the repeated observations or extra validation data (Hall and Ma, 2007; Johannes,

2009; Neumann, 2007).

In a classical context, starting with the construction of the deconvoluting kernel based on some

suitable kernel function K(·) and the empirical estimator of the Fourier transform of the marginal

density p, one can derive the deconvolution kernel density estimator (Fan and Truong, 1993) of

regression function f and marginal density p by

p̂n(x) =
1

nh

n∑
i=1

Kn{(x−Wi)/h}, (4)

f̂n(x) =
1

nh

n∑
i=1

Kn{(x−Wi)/h}Yi/p̂n(x), (5)

Kn(x) =
1

2π

∫
e−itx

φK(t)

φu(t/h)
dt. (6)

Here Kn is the deconvoluting kernel function, φK and φu are the Fourier transforms of the kernel

function K and the density of measurement error gu, respectively. Usually φK is assumed to be

compactly supported to ensure Kn is well defined. Also, to achieve the rate optimality one requires

that K is a kth-order kernel function with k being the order of smooth of the unknown regression

function. In practice, such deconvolution kernels typically do not admit closed form expressions,

and the estimation could suffer from extra errors due to numerical integrations.

1.3 Bayesian nonparametric regression with errors-in-variables

In this article, we consider the normal measurement error distribution N(0, δ2) with unknown

variance δ2. In the Bayesian framework, we obtain the posterior distribution of unknown parameters

θ = (f, p, δ) given the observed values Dn = {(Yi,Wi), i = 1, . . . , n} via Bayes’ rule:

pr(θ | Dn) =
pr(Dn | θ) pr(θ)

pr(Dn)
.

This posterior distribution pr(θ | Dn) can then be used to conduct statistical inference on p and

f , such as constructing point estimators and their associated credible intervals or bands. We

consider the following generic Bayesian hierarchical model for nonparametric regression with errors
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in variables:
Yi = f(Xi) + εi, εi ∼ N(0, σ2),

Wi = Xi + ui, ui ∼ N(0, δ2), Xi ∼ p (i = 1, . . . , n),

f ∼ Πf , p ∼ Πp, σ2 ∼ Πσ2 , δ2 ∼ Πδ2 .

(7)

Variants of model defined in (7) are used in the context of Bayesian methods in errors-in-variables

regression problem (Berry et al., 2002; Sarkar et al., 2014). Although for practical purposes, we

assume a prior distribution on δ2, for our theoretical analysis, we assume δ to be known and let δ2

decrease to 0 at a certain rate with respect to n. This is equivalent to having replicated proxies

per observation which helps to recover the unknown regression function with more accuracy even

in the presence of a Gaussian error distribution (Fan and Truong, 1993). For practical purpose we

assign an objective prior on σ2, the details of which can be found in Sections 3.2 and in Appendix.

By assigning proper priors on f and p, we show that the estimation of f and p can be made

adaptive, meaning that the prior does not demand any knowledge on the smoothness of the true

regression function, and yet a nearly optimal rate of posterior contraction can be achieved as if

the smoothness is known. The details of choosing the specific priors Πf on the function space

and Πp on the probability space are discussed in the following subsection. Observe that unlike

the deconvolution kernel estimator, a Bayesian method does not require explicitly constructing a

deconvoluting kernel function Kn, although the existence of such kernel is used in the proof for

constructing the test function aforementioned in the introduction. In the following, we describe

choices of Πf which requires specifying a covariance kernel analogous to the kernel K.

1.4 Prior specifications

In this paper, we choose the prior Πf for f as a Gaussian process prior (Rasmussen and Williams,

2006), which is a distribution over a space of functions such that the joint distribution of any finite

evaluations of the random function is multivariate Gaussian. A gaussian process is completely

defined by a mean function m(x) = E{f(x)} and a covariance function c(x, x′) = cov{f(x), f(x′)}.
Therefore, any finite collection of random observation points {y1(x1), . . . , yN (xN )} at locations

x1, . . . , xN has a joint Gaussian distribution given by

{y1(x1), . . . , yN (xN )} ∼ N(m,Σ),

where m = {m(x1), . . . ,m(xN )} and Σ is the covariance matrix with Σij = τ2c(xi, xj). The

mean function reflects the expected center of the realization, and the covariance function reflects

its fluctuation and local dependence. The hyperparameter τ in the covariance function further

controls the fluctuation magnitude. We use the notation f(·) ∼ gp(m(·), τ2c(·, ·)) to denote our

function f follows a Gaussian process with mean function m and covariance function τ2c. For

the regular Gaussian process regression with noise level σ, the predictive formula (Rasmussen and
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Williams, 2006) is

f(X∗) | X,Y,X∗ ∼ N(f̄∗, cov{f(X∗)}),

f̄∗ = c(X∗, X){c(X,X) + σ2I}−1Y,

cov{f(X∗)} = c(X∗, X∗)− c(X∗, X){c(X,X) + σ2I}−1c(X,X∗),

where X,Y are the given data, X∗ is the new data point, f(X∗) is the prediction at X∗ and

c(X∗, X) denotes the covariance matrix of X∗ and X. Refer to Rasmussen and Williams (2006) for

a detailed explanation of a Gaussian process. The posterior is a multivariate normal involved with

the original data and the new data point. Choice of c is crucial to obtain a desirable functional

estimation. A squared exponential covariance or more generally, a Matérn covariance kernel is

commonly used in practice. The kernel is often associated with hyperparameters which control the

smoothness of the sample paths (Adler, 1990). We shall discuss specific choices in Section 2.2.

It might appear on the surface that one can assume a parametric distribution for the unknown

X if the interest is solely on recovering the unknown function f . However as we will show in the

simulation studies and also observed in Sarkar et al. (2014), a parametric distribution on X is

not capable of recovering the unknown infinite dimensional parameters (p, f). As a flexible prior

distribution on the density p, we propose to use a Dirichlet process Gaussian mixture prior defined

by

X ∼ g(·), g(·) =

∫
φ√τ (· − µ)G(dµ, dτ), G ∼ dp(αG0). (8)

Here φ√τ (·−µ) denotes the normal density function with mean µ and variance τ . dp(αG0) denotes

a Dirichlet process prior (Ferguson, 1973) with G0 as the base probability measure on R × R+

and α > 0 is a precision parameter. Given a probability space P, for any P ∈ P we define the

measure space (X,Ω, P ) with Ω the Borel sets of X, A Dirichlet process satisfies that for any finite

and measurable partition B1, . . . , Bk on X, {P (B1), . . . , P (Bk)} ∼ Dir{αG0(B1), . . . , αG0(Bk)},
where Dir{a1, . . . , ak} denotes the Dirichlet distribution with parameters a1, . . . , ak. A Dirichlet

process Gaussian mixture prior is known to be a highly flexible nonparametric prior on the space of

densities having a common support as the base measure G0 (Escobar and West, 1995). It has thus

become a very popular Bayesian density estimation method which received considerable attention

over the last two decades both from computational (Kalli et al., 2011; Neal, 2000) and theoretical

perspectives (Ghosal and van ver Vaart, 2007; Kruijer et al., 2010; Shen et al., 2013). Applying the

Gaussian process prior to recover the true regression combined with modeling the marginal density

with finite approximation of the Dirichlet process Gaussian mixture prior, we can correct for the

bias due to the measurement error.

6



2 Theoretical Contraction Properties

2.1 Notation and preliminaries

Let bxc denote the greatest integer that is strictly less than or equal to x for all x ∈ R. We define

the L1 norm as ‖f‖1 =
∫
|f(x)|dx. We also define the supremum norm ‖f‖∞ = supx∈S |f(x)|,

where S is the domain of function f . Assume Cβ[0, 1] to be the Hölder space of β-smooth functions

f : [0, 1]→ R satisfying

|f(x+ y)bβc − f(x)bβc| ≤ L|y|β−bβc, (x, y) ∈ [0, 1],

for some constant L > 0. For any probability measure F on R let pF,σ(x) =
∫
φσ(x − z)dF (z)

stand for the location mixture of normals induced by F . For any finite positive measure α write

ᾱ = α/α(R), where α(R) denotes a measure on R. Let dp(α) denote the Dirichlet process with base

measure α. We denote the posterior distribution by Πn(· | Dn) and the prior distribution by Π(·).
Here σ is the regression noise level and we assume σ = 1 in the following to simplify notations.

Extension to general σ is straightforward.

2.2 Assumptions

Assumption 2.1. The regression function f0 ∈ Cβ[0, 1] with β > 1/2.

We do not assume that β is known while fitting the model and our optimal convergence rate

results are adaptive for any choice of β > 1/2. This is achieved easily in a Bayesian paradigm

through a suitable hyperprior on the smoothness parameter of the Gaussian process. The lower

bound on the smoothness is a common assumption in a random design regression, refer to Baraud

(2002); Birgé (1979); Brown et al. (2002) for further discussion on this topic.

Assumption 2.2. The marginal density p0 of the unobserved covariates X is in Cβ′ [0, 1] for β′ ≥
β, where β is defined in Assumption 2.1. Also, there exists a finite constant B > 0 such that

infx∈[0,1] p0(x) ≥ B−1.

Smoothness assumptions and the lower bound assumption on the marginal density ensure a

better control of the numerator and the denominator of the deconvolution kernel estimator defined

in (5) separately. Analogous smoothness assumptions can be found in Fan and Truong (1993), that

the regression function and marginal density are assumed to have the same smoothness. Refer also

to Delaigle and Meister (2007) where f0p0 and p0 are assumed to have the same smoothness.

The assumption β′ > β in Assumptions 2.1 and 2.2 requires discussion. From model (1), the

deconvolution density estimation problem for p0 can be reduced to a random design regression

function estimation problem for f0 by conditioning on a density p in the parameter space. Hence

the overall convergence rate will be the minimum of the contraction rates for estimating p0 and f0

separately. Although our theory is derived for compactly supported p0, it can be extended to the

unbounded support case with desirable tail conditions (Kruijer et al., 2010) on p0.
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In the Bayesian errors-in-variables model defined in (7), we assign a centered and rescaled Gaus-

sian process prior on f , denoted as gp(0, c;A), associated with the squared exponential covariance

kernel c(x, x′;A) = exp{−A2‖x − x′‖2} with the rescaled random variable A satisfying Assump-

tion 2.3 below. This choice is motivated by the fact that a properly scaled squared exponential

covariance kernel is known to lead to optimal rate of posterior convergence (van der Vaart et al.,

2007; van der Vaart and van Zanten, 2009). We consider a Dirichlet process Gaussian mixture

prior on the marginal density p defined as pF,σ̃, with F ∼ dp(α) and σ̃ ∼ G, where G satisfies

the Assumption 2.4 below. For convenience, to derive the frequentist theoretical properties of the

Bayesian errors-in-variables model, we assume the response noise level σ = 1.

Assumption 2.3. We assume the rescaled parameter A possesses a density m satisfying for suf-

ficiently large a > 0,

C1a
p exp (−D1a logq a) ≤ m(a) ≤ C2a

p exp (−D2a logq a),

for constants C1, C2, D1, D2 > 0 and p, q ≥ 0. For technical reasons we assume a conditional

Gaussian process prior on the sets of all functions A = {f ∈ C[0, 1] : ‖f‖∞ < A0}, for some

positive constant A0.

Assumption 2.3 includes the gamma density as a special case when q = 0. A similar assumption

appears in van der Vaart and van Zanten (2009).

Assumption 2.4. The Dirichlet process Gaussian mixture prior on the marginal density p(x)

defined by pF,σ̃ with F ∼ dp(α) and σ̃ ∼ G, satisfy the following conditions:

1− ᾱ[−x, x] ≤ exp(−b1xτ1) for all sufficiently large x > 0,

G(σ̃−2 ≥ x) ≤ c1 exp(−b2xτ2) for all sufficiently large x > 0,

G(σ̃−2 < x) ≤ c2xτ3 for all sufficiently small x > 0,

G(s < σ̃−2 < s(1 + t)) ≤ c3sc4tc5 exp(−b3x1/2) for s > 0 and t ∈ (0, 1),

for positive constants τ1, τ2, τ3, b1, b2, b3, c1, . . . , c5.

The inverse-gamma density on σ̃ satisfies the above assumptions, whereas the inverse-gamma

density on σ̃2 does not. This is a fairly standard assumption in the Bayesian asymptotics literature

on the Dirichlet process mixture of Gaussians, refer to the posterior convergence analysis for density

estimation in Shen et al. (2013).

2.3 Main theorem on posterior contraction

For the model defined in (1) we define the marginal likelihood of a random pair (Y,W ) by

gf,p(y, w) = (2πδ)−1
∫
φ1{y− f(x)}φδ(w− x)p(x)dx and the corresponding distribution is denoted

8



by Gf,p, so the posterior distribution can be written as

Πn{(f, p) ∈ B | Y1:n,W1:n} =

∫
B Πn

j=1gf,p(Yj ,Wj)dΠ(f)dΠ(p)∫
P Πn

j=1gf,p(Yj ,Wj)dΠ(f)dΠ(p)
,

where B is any measurable subset of P = {(f, p) : f : [0, 1] → R, a continuous function, p :

[0, 1]→ R, a density function}.

Theorem 2.5. Suppose f0 and p0 satisfy Assumptions 2.1 and 2.2 respectively, and the prior Π on

(f, p) satisfies the Assumptions 2.3 and 2.4. Then for some fixed large constant M > 0, sufficiently

large n, and the standard deviation of the measurement error δn,

Πn{(f, p) : ‖f − f0‖1 < M max(εn, δ
β
n), ‖p− p0‖1 < M max(εn, δ

β
n) | Y1:n,W1:n}

→ 1 almost surely in Gf0,p0 ,

where εn = n−β/(2β+1)(log n)t with t = max {(2 ∨ q)β/(2β + 1), 1}. When δn . ε
1/β
n , the conver-

gence rate is a multiple of εn.

The proof of Theorem 2.5 can be found in Appendix. Existing convergence rate results in the fre-

quentist deconvolution literature (Fan and Truong, 1993) require the knowledge of the smoothness

of the true covariate density and the regression function to achieve the optimal convergence rate for

the regression function. Our Theorem 2.5, on the other hand, achieve minimax optimal rates of pos-

terior convergence adaptively over all smoothness levels (β′, β) with β′ > β defined in Assumptions

2.1 and 2.2 as long as we ensure the noise variance is sufficiently small (or the number of replications

is sufficiently large). Since the proposed prior distribution does not require any knowledge of the

smoothness of either f0 or p0. To understand the implication of the convergence rate in Theorem 2.5

let us focus on the case β = 1. Since {f(X)−f0(X)} � {f(W )−f0(W )}+{f ′(W )+f ′0(W )}(X−W ),

the convergence rate for estimating f is limited by how fast the density of X can be recovered from

the observations W . This intuitively justifies the rate max(εn, δ
β
n) in this case.

Analyzing the posterior requires upper bounding the numerator of the posterior and lower

bounding the denominator (Ghosal et al., 2000). The upper bound of the numerator is obtained

by constructing a sequence of test functions using the deconvolution kernel estimator. We also

obtain sharp bounds for the Type I and Type II errors by developing large deviation bounds for the

estimators. To lower-bound the denominator of the posterior we need both priors on the regression

and marginal density to assign enough mass around the true. A single Gaussian prior on the

covariates cannot concentrate enough in the neighborhood of the true locations, simply because

the concentration of n-dimensional standard Gaussian vector cannot exploit the smoothness of the

density and hence cannot assign enough mass within a small neighborhood around the true density.

On the other hand, a mixture of Gaussians prior allows borrowing of information, naturally exploits

the smoothness and provides adequate concentration.
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3 Posterior computation

3.1 Sampling from the posterior distribution

In order to sample from the posterior distribution of (f, p, δ, σ), we employ a Gibbs sampler and

sample from each of the parameters given the others. Posterior sampling methods for Bayesian

density estimation using Dirichlet process Gaussian mixture prior is popular, refer to the Pólya

urn sampler (Escobar and West, 1995; MacEachern and Müller, 1998) and blocked Gibbs sampler

with stick-breaking representation (Ishwaran and James, 2001). In this article, we use the finite ap-

proximation of the Dirichlet process Gaussian mixture prior with the stick-breaking representation.

The major bottleneck of the computation stems from sampling the Gaussian process term f which

requires a) inversion of n×n matrices which depend on the latent covariates and b) sampling from

the conditional distribution of the true covariates, which is intractable. Step a) makes the algorithm

computationally inefficient and unstable specifically for the errors-in-variables regression problem,

since it requires evaluating the inverse of the covariance matrix repeatedly along with the updates

of the covariates. To bypass the O(n3) computation steps associated with inverting an unstructured

n×n covariance matrix, numerous powerful techniques have been proposed in the last decade; fixed

rank kriging (Banerjee et al., 2008; Finley et al., 2009), covariance tapering (Furrer et al., 2006;

Kaufman et al., 2008), composite likelihood methods (Guan, 2006; Heagerty and Lele, 1998). In

using these techniques, often the original covariance kernel itself is not preserved, which means

the covariance function of the approximate process is different from the covariance function of the

original process. More recently, Stroud et al. (2017) and Guinness and Fuentes (2017) derived a

fast algorithm of sampling from stationary Gaussian processes on the large-scale lattice data, using

the circulant embedding technique proposed in Wood and Chan (1994). Such techniques typically

require the assumption of equally spaced covariates. In the absence of equally-spaced design, the

idea is to define a larger lattice and considering the prediction as missing data imputation (Guinness

and Fuentes, 2017; Stroud et al., 2017). However, it is not straightforward to translate these ideas

to an errors-in-variables regression problem as the true covariates are contaminated and the true

marginal distribution remains unknown. Instead, we consider using a lower dimensional mapping

to approximate the Gaussian process based on the random Fourier basis proposed by Rahimi and

Recht (2008) which has the same covariance kernel as the original Gaussian process. This avoids

computing the inverse of covariance matrix by introducing more parameters in the Fourier basis.

Moreover, this is suitable in applications where practitioners have a pre-conceived notion of using

a particular covariance function and we require the approximated covariance to accurately reflect

that prior opinion. The lower dimensional mapping is chosen in to approximate the original Gaus-

sian process arbitrarily well; refer to Theorem 3.1. We describe the approximate Gaussian process

in the following Section 3.2.
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3.2 An approximation of the Gaussian process

We develop a low-rank random Fourier basis projection of a stationary mean Gaussian process

gp(0, c) with the corresponding spectral density φc defined through c(h) =
∫
eihxφc(x)dx. For a

suitably chosen large integer N , we define

f̃N (x) = (2/N)1/2
N∑
j=1

aj cos(wjx+ sj), (9)

where aj ∼ N(0, 1), wj ∼ φc and sj ∼ Unif (0, 2π), for j = 1, . . . , N . The proposed approximation

preserves the original covariance kernel function, furthermore it weakly converges to the original

Gaussian process. We formalize our results in Theorem 3.1.

Theorem 3.1. Suppose f is the original Gaussian process gp(0, c) and f̃N is defined in (9), we

have f̃N → f in distribution as N →∞. And for any x, y ∈ R,

E{f̃N (x)} = 0; cov{f̃N (x), f̃N (y)} = c(x, y).

The proof of Theorem 3.1 can be found in Appendix. The construction f̃N is related to the

random feature map in the Fourier domain (Rahimi and Recht, 2008), used to project the kernel onto

a lower-dimension space RN . For fitting f̃N to the data, it suffices to treat {aj , wj , sj (j = 1, . . . , N)}
as unknown parameters endowed with independent priors. In practice, larger N leads to a better

approximation, but is associated with a heavier computational burden. In the simulations and real

data analysis, we find the approximated estimator performs almost as well as the original Gaussian

process when N is chosen in the interval (n/5, n/4) according to our numerical experiments.

4 Numerical results

We present numerical results of the proposed method and its variants in the following synthetic

examples. Detailed posterior computation steps are in the Section F in the Appendix. We con-

sider the uniform marginal distribution X ∼ Unif [−3, 3] and two regression functions: f1(x) =

sin(πx/2)/[1+2x2{sign(x)+1}] and f2(x) = (x+x2)/4. We consider sample size n = 100, 250, 500,

with independently and identically distributed errors ε ∼ N(0, σ2) with fixed σ = 0.2. We only

present the numerical results of n = 500, the results for n = 100, 250 were similar. For n = 500, we

set the measurement error distribution to be u ∼ N(0, δ2) with δ2 = 0.001, 0.005, 0.01, 0.1, 0.5, 1.

For each setting, we compare the following methods:

1. gpeva: Approximate Gaussian process method described in Section 3.2 with a Dirichlet

process Gaussian mixture prior on marginal density.

2. gpevn: Approximate Gaussian process method described in Section 3.2 with a single normal

prior on the covariates.
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3. gpevf : Full scale Gaussian process model using regular predictive formula, see Rasmussen

and Williams (2006) for more details; with a Dirichlet process Gaussian mixture prior on the

marginal density.

4. gp: Gaussian process model that ignores the measurement error.

5. decon: Deconvoluting kernel method as in https://github.com/TimothyHyndman/deconvolve.

For n = 500, we used N = 80 respectively to implement gpeva and gpevn. The choice of the

hyperparameters and additional details for the Gibbs sampler can be found in Section F in the

Appendix. For the Bayesian methods, the posterior mean denoted as f̂ , is the estimator of the

unknown regression function f with pointwise 95% credible intervals obtained by constructing U(x)

and L(x) such that

Πn{f(x) ∈ [L(x), U(x)] | Dn} = 0.95.

We also consider simultaneous credible bands centered at the posterior mean f̂ with level β ∈ (0, 1),

CBn(β) =
{
f :

∥∥f − f̂∥∥∞ ≤ r},
where the half length r is chosen so that posterior probability of f falling into the credible band is

95%,

Πn

{
f ∈ CBn(β)

∣∣Dn

}
= 0.95.

From Table 1, as δ2 increases, we see gpeva has the lowest mean squared error compared to

the other methods for both f1 and f2, for instance, for f1 with δ2 = 1, amse obtained by gpeva

is around 7, while the averaged mean squared errors of other methods are approximately twice.

gp in particular has much larger mean squared errors, which suggests ignoring measurement error

even in the case when the error is small significantly affects the function estimation. For f2 we

find that gp performs well when δ2 is small, while decon is relatively worse. This can be explained

from the fact that the function f2 is smooth and less complicated, the contamination in covariate

does not affect the function values too much in a small window. A careful inspection of our theory

shows that the posterior distribution contracts towards the true function at a much slower rate if a

single normal prior is placed on the covariate. This is empirically verified from the fact that gpevn

obtains much larger mean squared errors for larger δ2, since it fails to estimate the covariates well.

Interestingly, we find that gpeva obtains smaller amse than gpevf in many cases. One possible

reason lies in the relative poor mixing of hyperparameters of gpevf . Figure 9 in Appendix shows

the last 200 posterior samples of bandwidth parameter (λ) of squared-exponential kernel, where λ

is defined in Section F in Appendix. It is evident that the mixing under gpeva is much better than

mixing with gp. The random Fourier basis representation provides more efficient way to update

the smoothness parameter. The computation time of gpeva, gpevn, gpevf , gp, decon for one

Markov chain iteration with sample size n = 500 for function f1 are 0.055, 0.051, 9.50, 0.033, 2.00

12



Table 1: Averaged Mean Squared Errors (amse) E [K−1
∑K

k=1{f̂j(tk)−fj(tk)}2 ] (f̂j(·) denotes the
proposed estimator of fj , j = 1, 2) over a regular grid (t1, . . . , tK) of size K = 100 in the interval
[−3, 3] and standard errors (×102) over 50 replicated data sets of size n = 500

δ2

Function Method 0·001 0·005 0·01 0·1 0·5 1

f1

gpeva 0·12 (0·04) 0·14 (0·06) 0·19 (0·08) 1·99 (0·66) 6·37 (2·33) 7·16 (3·82)
gpevf 0·12 (0·04) 0·14 (0·06) 0·20 (0·08) 2·15 (0·73) 10·57 (2·77) 13·68 (4·94)
gpevn 0·12 (0·04) 0 ·13(0·05) 0·15 (0·06) 1·40 (0·45) 11·53 (2·85) 20·45 (5·80)
gp 1·81 (0·09) 1·79 (0·08) 1·79 (0·10) 2·47 (0·27) 8·39 (1·13) 14.50 (1·78)
decon 0·40 (0·35) 0·36 (0·22) 0·37 (0·21) 1·01 (0·37) 9·60 (1·61) 18.30 (1·62)

δ2

Function Method 0·001 0·005 0·01 0·1 0·5 1

f2

gpeva 0·11 (0·12) 0·13 (0·11) 0·19 (0·09) 2·62 (0·63 ) 8·01 (3·05) 11·06 (5·39)
gpevf 0·08 (0·04) 0·11 (0·06) 0·21 (0·10) 3·23 (0·72) 9·31 (3·01) 15·52 (12·51)
gpevn 0·09 (0·08) 0·10 (0·04) 0·16 (0·18) 1·80 (0·41) 15·72 (2·68) 30·29 (7·15)
gp 0·07 (0·03) 0·09 (0·04) 0·12 (0·04) 1·07 (0·24) 6·25 (1·02) 13·94 (2·03)
decon 2·27 (2·09) 2·70 (2·77) 2·55 (2·60) 1·93 (1·54) 8·73 (1·34) 21·16 (2·66)

Figure 1: Predictions for f1(x) and f2(x) with δ2 = 0.005 (left panel), δ2 = 0.5 (middle panel)
and δ2 = 1 (right panel). The first row shows predictions for f1(x) and the second row for f2(x).
Sample size n = 500. The red line is the true function, the black line is the estimated function
using gpeva, the blue line is for decon, the purple dashed line is for gp. The darker and the lighter
shades are the pointwise and simultaneous 95% credible intervals obtained using gpeva.
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Figure 2: Boxplots of mean squared values for f1(x) and f2(x) over methods considered in Section
4 on 50 replicated data sets. First row shows the results for f1(x) and the second row for f2(x).
Left panel is with δ2 = 0.005, middle panel with δ2 = 0.5 and right panel with δ2 = 1. Sample size
n = 500. In each panel the methods from left to right are gpeva, gpevf , gpevn, gp and decon.

minutes respectively (with Intel Core i5 / 2.3 GHz processor). It is evident that gpeva and gpevn

achieve substantial speed-up compared to gpevf , which indicates a strong advantage of employing

gpeva to the cases with larger sample size. Overall, gpeva stands out as a more robust method

for different functions as well as sample sizes.

Figure 1 shows the performance in function estimation on [−3, 3]. We see that for both f1

and f2, when δ2 = 0.01, all methods perform well, except decon which has an increasingly worse

performance as n increases. For f1 we see that gpeva provides good prediction, preserving the

function curvature with a slight drift caused by the measurement errors, with the 95% pointwise

credible intervals containing the true function. On the other hand, both gp and decon methods are

unable to recover the function shape well. A similar pattern is observed for estimating f2. For small

values of δ we see that all gpev methods work better than gp and decon for both f1 and f2 in terms

of predictive mean squared errors (mse) in Figure 2. As δ2 increases, gpeva performs better than

all the others, especially for f1 with larger sample sizes and larger δ2. For f2, we observe similar

results for decon and gpev based methods. Figure 10 in Appendix shows the posterior marginal

density of the covariates, for sample sizes are 500 and when the true function is f1. When δ2 is

small, gpeva recovers the true marginal distribution Unif [−3, 3] reasonably well. However, as δ2

increases, the density estimates increasingly deviate from the true marginal distribution confirming

our theoretical results.
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5 A case study

We re-analyzed the real data set studied in Berry et al. (2002) using the proposed methods. As

mentioned in Berry et al. (2002), the data set was collected in a randomized study where the

actual content is not allowed to be disclosed. Basically the data contains a treatment group and a

control group. In each group we have the surrogate measurement W evaluated at baseline, and the

observed response Y evaluated at the end of study. We know smaller values of W and Y indicate a

worse case in the study. As discussed in Berry et al. (2002), the quantity of interest is the change

from the baseline ∆(X) = f(X) − X. To implement gpeva, we consider the normal zero-mean

measurement error with two choices of the variance, fixed variance δ2 = 0.35, the estimated value

from the study, and unknown variance δ2 with an objective prior Π(δ2) ∝ 1/δ2. We choose N = 60

and place exp (1.5) on λ, and treat σ2 as an unknown parameter and assign the objective prior

Π(σ2) ∝ 1/σ2. To update σ2 in the example, we use step 7 of the Gibbs sampler in Section F in

Appendix.

Figure 3 shows the prediction results of the changes by gpeva with δ2 = 0.35. We observe that

for both the treatment and control group, the change from the baseline increases first and then

decreases as the true baseline score increases, which coincides with the results presented in Berry

et al. (2002). In Figure 4, we compare the estimated changes by gpeva with fixed δ2 and unknown

δ2 for both the groups. We see that for both the treatment and control groups, an objective prior

on δ2 results in similar estimation of ∆(X) as in the case of fixed δ2. As for diagnostic checking in

algorithm, the mixing of the Markov chains of {wj , sj , xj (j = 1, . . . , N)} are good for both cases

of δ2. For more detail, see Figure 11 in Appendix for trace plots and density plots of the posterior

samples.

Figure 3: Estimate of ∆(X) at an equally-spaced grid over [−2, 2] with δ2 = 0.35. The solid line
indicates the treatment group with the darker shade as its 95% pointwise credible intervals and
the dashed line indicates the control group with the lighter shade as its 95% pointwise credible
intervals.
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Figure 4: Estimate of ∆(X) at an equally-spaced grid over [−2, 2] with different choices of δ2. The
left panel (solid lines) indicates the treatment group and the right panel (dashed lines) indicates
the control group. The black lines with darker shade are 95% pointwise credible intervals using
gpeva with δ2 = 0.35, the blue lines with light shade as 95% pointwise credible intervals using
gpeva with Π(δ2) ∝ 1/δ2.

6 Discussion

The article revisits error-in-variables regression problem from a Bayesian framework and addresses

two fundamental challenges. Theoretical guarantees on the convergence of the posterior are es-

tablished for the first time in a Bayesian framework. More specifically, optimal rates of posterior

convergence are obtained simultaneously for the regression function as well as the covariate density.

From a computational perspective, we provide a new Gaussian process approximation which facil-

itates posterior sampling and avoids costly matrix operations associated with a standard Gaussian

process framework.

Although our current theoretical results on posterior contraction pertain to the original Gaussian

process, our future work will involve extension to the approximate Gaussian process in light of

Theorem 3.1.

7 Supplementary Material

R programs for computing our estimator are at Github address https://github.com/szh0u/Gaussian-

Process-with-Errors-in-Variables. The data set used in Section 5 is available with those programs.
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A Summary

Section B introduces the notations used in the proofs and reviews some background knowledge.

Section C contains the proof of Theorem 2.5, followed with Section D containing the auxiliary

results used to prove Theorem 2.5. The proof of Theorem 3.1 is in Section E. Section F contains

the Gibbs sampler for posterior computation, and Section G contains the remaining numerical

results for sample sizes n = 100 and n = 250; trace plots of posterior samples of covariate X as

well as hyperparameters of gpeva described in Section 4.

B Notations

We first introduce some notations used in the proofs. Denote EX as the marginal expectation with

respect to random variable X; denote Pf,pX,Y as the probability measure of random pair (X,Y ) which

has joint density (f, p). Let ∗ denote the convolution, say, for two functions f and g, f ∗ g(x) =∫
f(x− t)g(t) dt. Let 1C denote the indicator function on any set C. Denote the Kullback-Leibler

distance between f and g with respect to the Lebesgue measure µ by KL(f, g) =
∫
f log(f/g) dµ,

and define the Kullback-Leibler divergence neighborhood of f0 as Bf0(ε) = {f :
∫
f0 log(f0/f) ≤

ε2,
∫
f0 (log(f0/f))2 ≤ ε2}. Next, we define the kth order kernel function K(·) satisfying,∫

K(u) du = 1,

∫
K2(u) du <∞,

∫
ubβcK(u) du 6= 0, (10)∫

ui−1K(u) du = 0, for i = 1, . . . , bβc − 1, β ≥ 2. (11)

Now we briefly recall the definition of the reproducing kernel Hilbert space of a Gaussian process

prior; a detailed review can be found in van der Vaart and van Zanten (2008). A Borel measurable

random element W with values in a separable Banach space (B, ‖·‖), for instance, the space of

continuous functions C[0, 1], is called Gaussian if the random variable b∗W is normally distributed

for any element b∗ ∈ B∗, the dual space of B. The reproducing kernel Hilbert space H attached

to a zero-mean Gaussian process W is defined as the completion of the linear space of functions

t 7→ EW (t)H relative to the inner product

〈E(W (·)H1); E(W (·)H2)〉H = E(H1H2),

where H,H1 and H2 are finite linear combinations of the form
∑

i aiW (si) with ai ∈ R and si in

the index set of W .

Let W = (Wt : t ∈ R) be a Gaussian process with squared exponential covariance kernel, which

is

C(t, t′) = e−(t−t
′)2 .

The spectral measure mw of W is absolutely continuous with respect to the Lebesgue measure λ
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on R with the Radon-Nikodym derivative given by

dmw

dλ
(x) =

1

(2π)1/2
e−x

2/4.

Define a scaled Gaussian process W a = (Wat : t ∈ [0, 1]), viewed as a map in C[0, 1]. Let

Ha denote the reproducing kernel Hilbert space of W a, with the corresponding norm ‖·‖Ha . The

unit balls in reproducing kernel Hilbert space and in the Banach space are denoted Ha
1 and B1

respectively.

Next we describe the construction of the sieve Pn on the parameter space of (f, p), the parameter

space of p. For fixed constants m,σ, σ̄ > 0 and integer H ≥ 1. Let

F =

{
pF,σ̃ = φσ̃ ∗ F : F =

∞∑
h=1

πhδzh , zh ∈ [−m,m], h ≤ H,
∑
h>H

πh < εn, σ ≤ σ̃ < σ̄

}
.

Set Pn = B̃n ⊗F , where B̃n = Bn ∩ A with Bn = MnHan
1 + εnB1 and A as in Assumption 2.3.

C Proof of Theorem 2.5

Denoting Un as the set {f, p : ||f − f0||1 < Mεn, ||p− p0||1 < Mεn}, our target is to show Πn(U cn |
Y1:n,W1:n) → 0 almost surely in Gf0,p0 . We upper bound Πn(U cn | Y1:n,W1:n) by Πn(f, p : ||f −
f0||1 > Mεn | Y1:n,W1:n) + Πn(p : ||p − p0||1 > Mεn | Y1:n,W1:n). The second part is well-

studied in the literature; refer to Shen et al. (2013) and the references therein which show that

Dirichlet process Gaussian mixture prior leads to a posterior convergence rate n−β
′/(2β′+1) where

β′ is the smoothness parameter of p0. It remains to analyze first term. To that end, define the

joint Kullback-Leibler neighborhood around (f0, p0) as

Bf0,p0(εn) =

{∫
gf0,p0 log

gf0,p0
gf,p

≤ ε2n,
∫
gf0,p0

(
log

gf0,p0
gf,p

)2

≤ ε2n
}
.

The following Contraction Theorem provides the sufficient conditions showing Πn(f, p : ||f−f0||1 >
Mεn | Y1:n,W1:n) converges almost surely to zero. A sketch of the proof is provided below.

Theorem C.1. (Contraction Theorem) Consider model (1) and under the conditions in Theorem

2.5, let Un = {||f−f0||1 > Mεn}. If there exists a sequence of εn → 0 and nε2n →∞ and a sequence

of sieve Pn ⊂ P and a sequence of test functions φn = 1{||f̂n−f0||1>(M−1)εn} satisfying the following

conditions,

Gf0,p0 φn ≤ e−(C+4)nε2n , sup
(f,p)∈Pn∩ Un

Gf,p (1− φn) ≤ e−(C+4)nε2n , (12)

Π
{
Bf0,p0(εn)

}
≥ e−nε2n , (13)

Π(Pcn) ≤ e−(C+4)nε2n . (14)
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then Πn(Ucn | Y1:n,W1:n)→ 0 almost surely in Gf0,p0, for M as in Theorem 2.5.

Proof. (Sketch) Define the set

Cn =

{∫
Πn
j=1gf,p (Yj ,Wj)

Πn
j=1gf0,p0 (Yj ,Wj)

dΠ(f)dΠ(p) ≥ e−(C+3)nε2n Π
{
Bf0,p0(εn)

}}
.

Under the conditions in Theorem 2.5, from Lemma 8.1 in Ghosal et al. (2000), it followsGf0,p0(Cn) ≥
1− 1/C ′nε2n, for some constant C ′ > 0. Hence for any sequence of test functions φn,

Πn(Ucn | Y1:n,W1:n) ≤ Gf0,p0φn +Gf0,p0(Ccn) +Gf0,p0Π(Pcn | Y1:n,W1:n)1Cn

+Gf0,p0Π(Un ∩ Pn | Y1:n,W1:n) (1− φn)1Cn .

From (13) and (14), the third term goes to 0. From (12) and (13), the first and the fourth terms

go to 0.

We now discuss below how Contraction Theorem is employed to prove Theorem 2.5. We prove

several auxiliary results in Appendix D which are useful to verify (12)-(14). The steps are

• (13) of Theorem C.1: Follows from Lemma D.4 under the conditions of Theorem 2.5.

• (14) of Theorem C.1: Follows from Lemma D.1 under the conditions of Theorem 2.5.

• (12) of Theorem C.1: For model (1), p̂n and f̂n are defined in (4) and (5), and f, p ∈ Pn.

It suffices to estimate P f0,p0Y,W,X(||f̂n − f0||1 > εn) and P f,pY,W,X(||f̂n − f ||1 > εn). Following a

similar line of argument in Meister (2009), for any marginal density p0 satisfying Assumption

2.2 and p ∈ Pn ∪ p0, define ∆p = (p̂n − p)/p and for f ∈ Pn ∪ f0 we have

|f̂n − f | ≤
|f̂np̂n − fp|
|p|

(
|∆p|
|∆p+ 1|

+ 1

)
+ |f | |∆p|

|∆p+ 1|
.

By Assumption 2.2, p0 is lower-bounded by some constant B−1 > 0. Then applying the

inequality (16) in Lemma D.2, for any constant ε0 > 0 we have ||p̂n−p||∞ < ε0 with probability

at least 1 − e−nε0h2n . Thus for p ∈ Pn, ||p − p0||∞ ≤ ||p̂n − p0||∞ + ||p̂n − p||∞ ≤ 2ε0 with

probability at least 1− e−nε0h2n . Then ||p||∞ ≥ ||p0||∞ − ||p− p0||∞ ≥ B1, for some constant

B1 > 0 by choosing ε0 < B−1/2. Thus for f ∈ Pn ∪ f0 and p ∈ Pn we have

||f̂n − f ||1 ≤
1

B1
||f̂np̂n − fp||1

(∣∣∣∣∣∣∣∣ ∆p

∆p+ 1

∣∣∣∣∣∣∣∣
∞

+ 1

)
+ ||f ||∞

∣∣∣∣∣∣∣∣ ∆p

∆p+ 1

∣∣∣∣∣∣∣∣
1

. (15)

Since ‖|∆p||∞ ≤ ε0/B1 with high probability, choosing ε0 such that ε0/B1 ≤ 1/2, then we

have ||∆p/(∆p + 1)||∞ ≤ 1 and 1/2 ≤ ||∆p + 1||∞ ≤ 3/2 and therefore 1/||∆p + 1||∞ ≤ 2.

Thus we have,∣∣∣∣∣∣∣∣ ∆p

∆p+ 1

∣∣∣∣∣∣∣∣
1

≤ 1

||∆p+ 1||∞||p||∞

∫ 1

0
|p̂n(x)− p(x)|dx ≤ 2

B1
||p̂n − p||1,
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Similarly for p = p0, we bound ||∆p/(∆p+1)||1 ≤ 2B||p̂n−p0||1. Combining the above results

and (15), we obtain,

pr(||f̂n − f ||1 > εn) ≤ pr(f̂n · p̂n − f · p||1 > B1εn/4) + pr{||p̂n − p||1 > B1εn/(4||f ||∞)}

+ pr(||p̂n − p||∞ > ε0).

Since we assume f0 and f ∈ Pn are bounded, applying Lemma D.2 yields (12).

Thus Πn(Ucn | Y1:n,W1:n)→ 0 as n→∞ almost surely in Gf0,p0 .

D Auxiliary results

Lemma D.1. Suppose Assumptions 2.1, 2.2, 2.3 and 2.4 hold, by taking Mn = an = ε
−1/β
n , H -

nε2n,m
τ1 - n, σ - n−1/2τ2 and σ̄2τ3 - en, we have Π(Pcn) ≤ e−nε

2
n with εn = n−β/(2β+1)(log n)t, t =

max {(2 ∨ q)β/(2β + 1), 1}.

Lemma D.2. For model (1), p̂n and f̂n defined in (4) and (5) and f, p ∈ Pn for any small constant

ε0 > 0,

P pW,X(||p̂n − p||∞ > ε0) ≤ e−C1nε0h2n , (16)

P pW,X(||p̂n − p||1 > εn) ≤ e−nε2n , (17)

P f,pY,W,X(||f̂n p̂n − f p||1 > εn) ≤ e−nε2n , (18)

where hn � ε
1/β
n , εn = n−β/(2β+1)(log n)t with t = max {(2 ∨ q)β/(2β + 1), 1} and some constant

C1 > 0.

Lemma D.3. Suppose Assumptions 2.2, 2.3 and 2.4 hold, then Π{KL(p0, εn)} ≥ e−nε
2
n, where

εn = n−β/(2β+1)(log n)t with t = max {(2 ∨ q)β/(2β + 1), 1}.

Lemma D.4. Under the conditions in Theorem 2.5 and suppose Lemma D.3 hold, for sufficiently

large n,

Π
{
B(f0,g0)(εn)

}
≥ e−nε2n , (19)

where εn = n−β/(2β+1)(log n)t with t = max {(2 ∨ q)β/(2β + 1), 1}.

Lemma D.5. (Theorem 7.3 in Bousquet (2003)) Suppose G is a countable set of functions g : X →
R and assume all functions g ∈ G are measurable, squared-integrable and satisfy E{g(Xk)} = 0.

Assume supg∈G ess sup g is bounded and define Z = supg∈G
∑n

k=1 g(Xk). Let σG be a positive real

number such that nσ2G ≥
∑n

k=1 supg∈G E{g2(Xk)}, then for all t > 0 with ν = nσ2G + 2E(Z), we

have

pr

{
Z ≥ E(Z) + (2tν)1/2 +

t

3

}
≤ e−t.
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Lemma D.6. (Borell’s inequality in Adler (1990)) Let {f(x) : x ∈ [0, 1]} be a centered Gaussian

process and denote ‖f‖∞ = supx∈[0,1] f(x) and σ2f = supx∈[0,1]E{f2(x)}. Then E(‖f‖∞) <∞ and

for any t > 0,

pr(|‖f‖∞ − E‖f‖∞| > t) ≤ 2e−
1
2
t2/σ2

f .

D.1 Proof of Lemma D.1

Based on the definition of sieves Pn, Pcn = (Bc
n ⊗ F) ∪ (Bn ⊗ Fc) ∪ (Bc

n ⊗ Fc), thus Π(Pcn) ≤
2{Π(Bc

n)+Π(Fc)}. First we bound the second term in the right hand, by the Assumptions 2.3 and

2.4,

Π(Fc) ≤ Hᾱ([−m,m]c) + pr(σ̃ 6∈ [σ, σ̄]) + pr

(∑
h>H

πh > ε

)

≤ He−b1mτ1 + c2σ̄
−2τ3 + c1e

−b2σ−2τ2
+

(
e|α|
H

log
1

ε

)H
Choosing mτ1 - n, σ - n−1/2τ2 and σ̄2τ3 - en with ε = εn for same εn in Theorem 2.5, the first

three terms in the second inequality can be bounded by a multiple of e−n and by taking H - nε2n
the last term can be bounded by,(

e|α|
H

log
1

ε

)H
- e−H log(H logn) - e−

1
2α+1

n1/(2α+1)(logn)2t+1

- e−c4n
1/(2α+1)(logn)2t .

Thus Π(Pcn) - e−c4nε
2
n for every c4 > 0. Now we bound Π(B̃c

n). By definition, Π(B̃c
n) = Π(Bc

n |
A) ≤ Π(Bc

n)/pr(A), with A defined in the Assumption 2.3. By the fact E(||f ||∞) <∞, and σ2f =

supx∈[0,1] E{f(x)}2 <∞, applying Borell’s inequality in Lemma D.6, we have pr(A) = pr(||f ||∞ <

A0) ≥ 1− e−A
2
0/2σ

2
f ≥ a0, for some constants A0 > 0 and a0 ∈ (0, 1). Thus Π(B̃c

n) - Π(Bc
n) - e−nε

2
n

if M2
n - nε2n and a2n - nε2n, more details can be found in the proof of Theorem 3.1 in van der Vaart

and van Zanten (2009).

D.2 Proof of Lemma D.2

To prove Lemma D.2 we will prove the third assertion (18) in detail and discuss the key elements

in the proof of the first two assertions (16)-(17) since they follow the similar line of argument. The

key steps of the proof are application of Talagrand’s inequality stated in Lemma D.5 and the fact

that ||Kn||1 is bounded which is discussed in the following proposition.

Proposition D.7. For any kernel function K satisfying (10)-(11) and Kn defined in (6), we have

||Kn||1 < C1, for some constant C1 > 0.

Proof. There exists a symmetric and integrable kernel function K such that (10)-(11) hold and the

Fourier transform φK(t) = 1[−1,1]/(2π), which is symmetric, real-valued, bounded infinitely smooth
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function with compact support. For any fixed positive constant a,
∫
|Kn(s)| ds =

∫
|s|≤a |Kn(s)| ds+∫

|s|>a |Kn(s)| ds. We have

|Kn(s)| ≤
∫
|e−its| |φK(t)|

|φδ(t/hn)|
dt ≤

∫ 1

−1

|φK(t)|
|φδ(t/hn)|

dt - exp(δ2n/2h
2
n),

thus
∫
|s|≤a |Kn(s)| ds - exp(δ2n/2h

2
n). For |s| > a, by Cauchy-Schwarz inequality,

∫
|s|>a

|Kn(s)|ds ≤
(∫
|s|>a

1

s4
ds

)1/2{∫
|s|>a

s4Kn(s)2ds

}1/2

.

By Parseval’s theorem,
∫
{s2Kn(s)}2 ds =

∫
{g′′(t)}2 dt with

g(t) = φK(t)/φδ(t/hn) =
1

2π
e−t

2δ2/(2h2n) 1[−1,1].

Since g′′(t) is the Fourier transform of (is)2Kn(s), also g(t), g′(t), g′′(t) are continuous and therefore

bounded on [−1, 1]. Thus
∫
{s2Kn(s)}2 ds is bounded and so is

∫
|s|>a 1/s4 ds, which yields the result

that
∫
|Kn(s)| ds is bounded.

Proposition D.8. For p̂n and f̂n defined in (4) and (5) and for any f, p ∈ Pn we have

||EW,X(p̂n)− p||1 - εn, ||EY,W,X(f̂np̂n)− fp||1 - εn, (20)

with εn in Theorem 2.5.

Proof. By Fourier inversion theorem it is easy to show that EW,X(p̂n) = Khn∗p(x) and EY,W,X(f̂np̂n) =

Khn ∗ (fp) with Khn = K(·/hn)/hn. First for any p = φσ̃ ∗ F , by Cauchy-Schwarz inequality we

have ||Khn ∗ p− p||1 ≤ ||Khn ∗ p− p||2. Again, we consider the kernel function K with the Fourier

transform φK(t), by Parseval’s theorem,

||Khn ∗ p− p||22 =

∫
|2πφK(hnt)− 1|2|p̂(t)|2dt =

∫
|t|>1/hn

|F̂ (t)|2|φ̂σ̃(t)|2dt

≤
∫
|t|>1/hn

|φ̂σ(t)|2dt ≤ (hn/σ
2)e−(σ/hn)

2/2 - h−1n (log n)−t3e−K
2(logn)2t3/2 - ε2n,

for all σ̃ ≥ σ. Let hn � ε1/βn with εn in Theorem 2.5 and from Lemma D.1 we have σ - n−1/2τ2 , we

choose τ2 such that σ = Khn(log n)t3 for some constants K2/2 > 1 and t3 > 1/2. Now we consider

the bias term of f̂np̂n. By triangle inequality

||Khn ∗ (fp)− fp||1 ≤ ||Khn ∗ (fp)− pKhn ∗ f ||1 + ||pKhn ∗ f − fp||1. (21)
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By Cauchy-Schwarz inequality, the first term of the right hand side of (21) can be bounded as

||Khn ∗ (fp)− pKhn ∗ f ||1 =

∫
|Khn(x− y){p(y)− p(x)}f(y) dy| dx

≤ ||Khn ∗ p− p||2 ||f ||2 - ||Khn ∗ p− p||2,

since ||f ||2 ≤ ||f ||∞ ≤ A0. The second term of the right hand side of (21) can be bounded

||pKhn ∗ f − fp||1 ≤ ||p||1||Khn ∗ f − f ||∞ = ||Khn ∗ f − f ||∞ - εn,

the last equation holds from the properties of higher order kernel as in Lemma 4.3 of van der Vaart

and van Zanten (2009).

Now we prove the inequality (18). By triangle inequality,

||f̂np̂n − fp||1 ≤ ||f̂np̂n − EY,W |X(f̂np̂n)||1 + ||EY,W |X(f̂np̂n)− EY,W,X(f̂np̂n)||1
+ ||EY,W,X(f̂np̂n)− f · p||1 := I1,n + I2,n + I3,n.

First we estimate pr(I1,n > εn). By definition

f̂np̂n − EY,W |X(f̂np̂n) =
1

2πnhn

n∑
j=1

∫
e−

itx
hn

{
eitWj/hnYj − EW |X

(
eitWj/hn

)
EY |X(Yj)

}
φK(t)

φu(t/hn)
dt

=
1

2πnhn

n∑
j=1

∫
e−

it(x−Wj)
hn

φK(t)

φu(t/hn)
dt {Yj − EY |X(Yj)}

+
1

2πnhn

n∑
j=1

∫
e−

itx
hn

{
eitWj/hn − EW |X

(
eitWj/hn

)} φK(t)

φu(t/hn)
dt EY |X(Yj)

:= T1,n + T2,n.

First, we estimate pr(||T2,n||1 > εn/2). By Hahn-Banach Theorem, there exists a bounded linear

functional T such that T (h) =
∫
T2,n(x)h(x)dx for all h ∈ L∞[0, 1] and ||T2,n||1 = ||T ||F1 , where

F1 ⊂ L∞[0, 1] is countable and dense. Thus we have

K =

{
k(u, v) : (u, v) 7→ 1

hn

∫ 1

0

[
Kn

(
x− u
hn

)
− EW |X

{
Kn

(
x−W
hn

)}]
f(v)h(x)dx, for all h ∈ F1

}
,

and ||nT2,n||1 = supk∈K |
∑n

j=1 k(Wj , Xj)|. To apply Lemma D.5, we need to estimate the following

quantities, supk∈K ||k(u, v)||∞, σ2K = EW |X{sup k2(W,X)} and E{supk∈K k(W,X)}. Based on the

Assumptions 2.3 and 2.4 we have ||f ||∞ ≤ C0 and ||h||∞ ≤ 1, then for any k ∈ K,

|k(u, v)| ≤ C2

hn

[ ∫ 1

0

∣∣∣∣Kn

(
x− u
hn

)∣∣∣∣dx+

∫ 1

0

∣∣∣∣EW |X{Kn

(
x−W
hn

)}∣∣∣∣dx],
for some constant C2 > 0. For any u, by change of variable s = (x − u)/hn, and for any fixed
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positive constant a,
∫ 1
0 |Kn{(x − u)/hn}/hn| dx ≤

∫
|Kn(s)|ds ≤ C ′ for some constant C ′. The

second inequality holds by Proposition D.7. Since W | X ∼ N(X, δ2n),

EW |X

{
Kn

(
x−W
hn

)}
=

1

2π

∫
EW |X

(
e−it[{x−X−(W−X)}/hn]

)
φK(t)

φu(t/hn)
dt

=
1

2π

∫
e−it(x−X/hn)φK(t)dt = K{(x−X)/hn}.

Again by change of variable r = (x−X)/hn, we have
∫ 1
0 EW |X [K{(x−W )/hn}/hn] dx =

∫
|K(r)|dr =

1. There exists a constant K1 such that ||k||∞ ≤ K1 for any k ∈ K, then supk∈K ‖k‖∞ -

max{1, exp(δ2n/2h
2
n)}. Next we estimate the term σ2K. For any k ∈ K and W | X ∼ N(X, δ2n),

k(W,X)2 =
1

h2n

(∫ 1

0

[
Kn

(
x− u
hn

)
− EW |X

{
Kn

(
x−W
hn

)}]
f(X)h(x)dx

)2

-
1

h2n

{∫ 1

0
Kn

(
x− u
hn

)
dx

}2

+
1

h2n

{∫ 1

0
EW |XKn

(
x−W
hn

)
dx

}2

- max{1, exp(δ2n/h
2
n)}.

Therefore supk∈KEW |X{k(W,X)2} - max{1, exp(δ2n/h
2
n)}.

Finally we need to bound EW |X supk∈K |
∑n

j=1 k(Wj , Xj)|. By Cauchy-Schwarz inequality,

EW |X

(
sup
k∈K

∣∣∣∣ n∑
j=1

k(Wj , Xj)

∣∣∣∣) ≤ [EW |X{ sup
k∈K

∣∣∣∣ n∑
j=1

k(Wj , Xj)

∣∣∣∣}2 ]1/2

-

(
1

h2n

n∑
j=1

EW |X

[ ∫ ∣∣∣∣Kn

(
x−Wj

hn

)
− EW |X

{
Kn

(
x−Wj

hn

)}∣∣∣∣ dx ]2)1/2

- n1/2 max{1, exp(δ2n/2h
2
n)}.

To apply the Lemma D.5, we choose δn � hn and same εn in Theorem 2.5, we have exp(δ2n/2h
2
n) =

O(1). By choosing t = nε2n, we have n1/2 + (2(n+ n1/2)nε2n)1/2 + nε2n/3 - nεn.

We now discuss bounding the probability pr(‖T1,n‖1 > εn/2). Recall that

nT1,n =

n∑
j=1

Kn{(x−Wj)/hn}(Yj − EY |XYj)/hn =

n∑
j=1

Kn{(x−Wj)/hn}Ỹj/hn,

with Ỹj ∼ N(0, 1) independently and identically for j = 1, . . . , n, since Yj | Xj ∼ N(f(Xj), 1) for

j = 1, . . . , n. Again by Hahn-Banach theorem there exists the countable and dense set T ∈ L∞[0, 1]

and the class of bounded linear functionals on L∞[0, 1],

Q =

{
q =

n∑
j=1

q̃(uj), q̃(u) =

∫ 1

0

n∑
j=1

Kn

(
x− u
hn

)
(Yj − EY |XYj) t(x) dx, t ∈ T

}
,
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and ‖nT1,n‖1 = supq∈Q ‖q‖∞.

To apply Lemma D.6, it suffices to estimate σ2Q = supq∈QEY |X{
∑n

j=1 q̃(Wj)}2 and EY |X supq∈Q ‖q‖∞.

Again by change of variable and the fact ‖t‖∞ ≤ 1 we have

EY |X

{ n∑
j=1

q̃(Wj)

}2

=
1

h2n

n∑
j=1

{∫ 1

0
Kn

(
x−Wj

hn

)
t(x) dx

}2

≤ 1

h2n

n∑
j=1

{∫ 1

0
Kn

(
x−Wj

hn

)
dx

}2

≤
n∑
j=1

(∫
|Kn(u)|du

)2

- nmax{1, exp(δ2n/h
2
n)}.

Next we estimate EY |X supq∈Q ‖q‖∞, using the generalized Minkowski inequality, we obtain

EY |X

(
sup
q∈Q
‖q‖∞

)
= EY |X(‖nT1,n‖1) ≤ {EY |X(‖nT1,n‖21)}1/2

≤ ‖[EY |X{(nT1,n)2}]1/2 ‖1 =

∫ {
1

h2n

n∑
j=1

Kn

(
x−Wj

hn

)2}1/2

dx.

the last equation in the second line holds since Yj ’s are independent, by Jensen’s inequality and

change of variable it can be bound by
∑n

j=1

∫
Kn{(x−Wj)/hn}2dx}1/2/hn = n1/2{

∫
Kn(u)2du}1/2/hn.

Fixed any constant a′ > 0,
∫
Kn(u)2du ≤

∫
|u|>a′(u

4/a′4)Kn(u)2 du+
∫
|u|≤a′ Kn(u)2du. It has been

shown in the proof of Proposition D.7 that
∫
u4Kn(u)2du - exp(δ2n/h

2
n), it is easy to see that∫

Kn(u)2du - max{1, exp(δ2n/h
2
n)}. Thus we have EY |X supq∈Q ‖q‖∞ - n1/2 max{1, exp(δ2n/h

2
n)}/
√
hn.

Applying Borell’s inequality in Lemma D.6 by choosing x = nεn, δn � hn � ε1/βn , εn = n−β/(2β+1)(log n)t

and t = max{(2 ∨ q)β/(2β + 1), 1}, we have shown that pr(‖T1,n‖1 > εn/2) < e−nε
2
n/8.

Now we estimate the probability pr(I2,n > εn). Recall that I2,n = EY,W |X(f̂np̂n)−EY,W,X(f̂np̂n),

by simple calculation we can show that EY,W |X(f̂np̂n) =
∑n

j=1K{(x−Xj)/hn}f(Xj)/(nhn). Thus

similarly by Hahn-Banach theorem, there exists a countable and dense set H1 ∈ L∞[0, 1] such that

we can construct the class of bounded linear functionals

L =

{
l(u) =

∫ [
K

(
x− u
hn

)
f(u)− EX

{
K

(
x−X
hn

)
f(X)

}]
h1(x) dx, h1 ∈ H1

}
,

and we have nI2,n = supl∈L ‖
∑n

j=1 l(Xj)‖∞. To apply the Talagrand’s inequality we need to bound

the following quantities. First we bound supl∈L |l(u)‖∞ ≤
∫
|K{(x−Xj)/hn}/hn| dx ‖f‖∞. Since

we can bound
∫
|K(u)|du above by some constant K3 > 0, by change of variable and Assumption

2.3 we have supl∈L |l(u)‖∞ ≤ K4, for some constant K4 > 0.

Second, we bound supl∈LEX{l(X)}2. For any l ∈ L,

EX{l(X)}2 ≤ 2EX

{∫ ∣∣∣∣K(x−Xhn

)∣∣∣∣dx}2

‖f‖2∞/h2n+2

[ ∫
EX

{
K

(
x−X
hn

)}
dx

]2
‖f‖2∞/h2n ≤ K5.

for some constant K5 > 0. Thus we show that supl∈LEX{l(X)2} ≤ K5.
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At last, we have

EX sup
l∈L

∣∣∣∣ n∑
j=1

l(Xj)

∣∣∣∣ ≤ {EX( sup
l∈L

∣∣∣∣ n∑
j=1

l(Xj)

∣∣∣∣)2}1/2

≤ 1

hn

(
2n

[
EX

{∫
K

(
x−X
hn

)
dx

}2

+

{∫
EXK

(
x−X
hn

)
dx

}2])1/2

‖f‖∞

- (n/hn)1/2.

Choosing hn � ε
1/β
n and same εn in the Theorem 2.5, and applying Talagrand’s inequality yields

the result pr(I2,n > εn/2) ≤ e−nε2n/8.
Finally, it is easy to see I3,n ≤ ε by Proposition D.8. Combining the results of I1,n, I2,n and

I3,n, we prove the inequality (18). Inequality (17) also holds since it can be seen as a special case

of inequality (18) when taking the regression function f(x) ≡ c for some constant c > 0.

The proof of inequality (16) follows the same line of arguments. Let P1,n = p̂n − EW |X(p̂n),

P2,n = EW |X(p̂n)−EW,X(p̂n) and P3,n = EW,X(p̂n)−p respectively. First, we estimate pr(‖P1,n‖∞ >

ε0/2). The difference is that we consider the empirical process directly in ‖ · ‖∞. Since function

Kn(x) is continuous and bounded on [0, 1], by the separability of C[0, 1], there exists a countable

and dense set T over [0, 1] and consider the class,

M =

{
mx(u) :

∫
e−itx/hn

{
eitu/hn − EW |X

(
eitW/hn

)}
φK(t)

φu(t/hn)
dt, x ∈ T

}
,

then ‖nP1,n‖∞ = supx∈T |
∑n

j=1mx(Wj)|. Also we have

sup
x∈T
‖mx‖∞ - h−1n exp(δ2n/2h

2
n),

sup
x∈T

EW |X [mx(W )]2 - h−2n exp(δ2n/h
2
n),

EW |X sup
x∈T
|
n∑
j=1

mx(Wj)| - n1/2h−1n exp(δ2n/h
2
n).

Therefore choosing δn = o(hn) and hn = o(εn) with same εn in Theorem 2.5 for any ε0 > 0 taking

t = ε0nh
2
n we have

n1/2h−1n exp(δ2n/2h
2
n) + {2nh−2n exp(δ2n/h

2
n) + 4n1/2h−1n exp(δ2/2h2n)}1/2 (nε0h

2
n)1/2 + ε0nh

2
n < nε0.

By applying Lemma D.5 we have pr(‖p̂n − EW |X(p̂n)‖∞ > ε0) ≤ e−ε0nh
2
n . Similarly, for P2,n =

EW |X(p̂n)−EW,X(p̂n) =
∑n

j=1 g̃x(Xj)/(nhn), where g̃x(u) = K{(x−u)/hn)}−EX [K{(x−X)/hn}]
for any x ∈ T . Construct the class G = {gx, x ∈ T} with the countable and dense set T over [0, 1],

with same calculation by choosing t = nε0h
2
n, δn = o(hn) and hn = o(εn), another application of

Talagrand’s inequality completes the proof.
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D.3 Proof of Lemma D.3

The Kullback-Leibler neighborhood around f0 has been studied extensively in literature. We give a

brief argument mentioning the difference in our case, refer to Shen et al. (2013) for extended proof.

Under the Assumption 2.2, p0 is compactly supported and lower-bounded. From Theorem 3 in Shen

et al. (2013), there exists a density function hσ supported on [−a0, a0] satisfying H(p0, φσ∗hσ) - σβ,

for some constant a0 > 0. Fix σβ = ε̃n{log(1/ε̃n)}−1 and find b′ > max (1, 1/(2β)) such that

ε̃b
′
n {log(1/ε̃n)}5/4 ≤ ε̃n. By Lemma 2 of Ghosal and van ver Vaart (2007) there is a discrete proba-

bility measure F ′ =
∑N

j=1 pjδzj with at most N ≤ Dσ−1{log(1/σ)}−1 support points on [−a0, a0],
and F ′ satisfies H(φσ ∗ hσ, φσ ∗ F ′) ≤ ε̃b

′
n {log(1/ε̃n)}1/4. We construct the partition {U1, . . . , UM}

in the flavor of cσε̃b
′
n ≤ α(Uj) ≤ 1 for j = 1, . . . ,M , and M - ε̃

1/β
n {log(1/ε̃n)}1+1/β. Further denote

the set SF of probability measure F with
∑M

j=1 |F (Uj)− pj | ≤ 2ε̃2b
′

n and min1≤j≤M F (Uj) ≥ ε̃4b
′

n /2

for sufficiently large n. Then Π(SF ) % exp[−ε̃−1/βn {log(1/ε̃n)}2+1/β]. For each F ∈ SF ,

H(p0, pF,σ) ≤ H(p0, φσ ∗ hσ) +H(φσ ∗ hσ, φσ ∗ F ′) +H(φσ ∗ F ′, pF,σ)

- σβ + ε̃b
′
n {log(1/ε̃n)}1/4 + ε̃b

′
n - σβ.

Also we can show that for every x ∈ [−a0, a0], pF,σ/p0 ≥ A4ε̃
b′
n /σ for some constant A4, which leads

to log ‖p0/pF,σ‖∞ - log(1/ε̃n).

D.4 Proof of Lemma D.4

To prove Lemma D.4, it suffice to upper bound the Kullback-Leibler divergence between gf0,p0
and gf,p as well as the second moment of Kullback-Leibler divergence. From Lemma D.1 and

Lemma 5.3 in van der Vaart and van Zanten (2009), we have Π{KL(p0, p) ≤ ε2n} ≥ e−nε
2
n and

Π(‖f − f0‖∞ < εn) ≥ e−nε
2
n . Then using the convexity of the Kullback-Leibler divergence with

respect to both arguments, we have

KL(gf0,p0 , gf,p) = KL

(
1

2πδn

∫
e−

1
2
(y−f0(x))2e

− 1

2δ2n
(w−x)2

dP0,
1

2πδn

∫
e−

1
2
(y−f(x))2e

− 1

2δ2n
(w−x)2 p

p0
dP0

)
≤
∫
KL

(
1

2πδn
e−

1
2
(y−f0(x))2e

− 1

2δ2n
(w−x)2

,
1

2πδn
e−

1
2
(y−f(x))2e

− 1

2δ2n
(w−x)2 p

p0

)
dP0

=

∫ ∫
1

2πδn
e−

1
2
(y−f0(x))2e

− 1

2δ2n
(w−x)2

log

(
e−

1
2
(y−f0(x))2

e−
1
2
(y−f(x))2

p0
p

)
dy dw dP0

=

∫
[KL{N(y; f0, 1), N(y; f, 1)}+ log(p0/p)] dP0

- ‖f0 − f‖2∞ +KL(p0, p) - ε2n,
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Where P0 denotes the distribution measure associated with p0. Next, we decompose the second

moment of the Kullback-Leibler divergence into,∫
gf0,p0

(
log

gf0,p0
gf,p

)2

=

∫
An

gf0,p0

(
log

gf0,p0
gf,p

)2

+

∫
Acn

gf0,p0

(
log

gf0,p0
gf,p

)2

=: I1 + I2.

(22)

where An = {y ∈ R : |y| ≤ γ′/εn} for some constant γ′ > 0.

For I1 in (22), we apply the inequality∫
An

gf0,p0

(
log

gf0,p0
gf,p

)2

≤ 2H2(gf0,p0 , gf,p)(1 + log ‖(gf0,p0/gf,p)1An‖∞)2.

Since H2(gf0,p0 , gf,p) ≤ KL(gf0,p0 , gf,p), we need to estimate the term ‖(gf0,p0/gf,p)1An‖∞. By

definition,

∣∣∣∣gf0,p0(y, w)

gf,p(y, w)

∣∣∣∣1An ≤ ∣∣∣∣
∫
An
e−

1
2
(y−f0(x))2e

− 1

2δ2n
(w−x)2

p(x)dx∫
An
e−

1
2
(y−f0(x))2 [e−

1
2
(y−f(x))2/e−

1
2
(y−f0(x))2 ] e

− 1

2δ2n
(w−x)2

p(x) dx

∣∣∣∣ · ∣∣∣∣∣∣∣∣ p0p
∣∣∣∣∣∣∣∣
∞

≤
∣∣∣∣∣∣∣∣e− 1

2
(y−f0)2

e−
1
2
(y−f)2

1An

∣∣∣∣∣∣∣∣
∞

∣∣∣∣∣∣∣∣p0p
∣∣∣∣∣∣∣∣
∞
.

Based on the Assumption 2.1 f0 is β-smooth function supported on [0, 1] and hence there exists

some constant B′0 > 0 such that ‖f0‖∞ ≤ B′0. For y ∈ An,

e−
1
2
{y−f(x)}2

e−
1
2
{y−f0(x)}2

1An = e{f(x)−f0(x)}{y−f0(x)}−{f(x)−f0(x)}
2/2 1An

≥ e−‖f−f0‖∞(|y|+‖f0‖∞)−{f(x)−f0(x)}2/2 1An

≥ e−εn(γ′/εn+B′0)−ε2n/2 ≥ e−2γ′ .

Thus ‖e−(y−f0)2/2/e−(y−f)2/21An‖∞ ≤ e2γ
′

and based on the results from Lemma D.1 for any

x ∈ [0, 1] and p ∈ Pn, we have log ‖p0/p‖∞ - log(1/εn). Therefore
∫
An
gf0,p0{log(gf0,p0/gf,p)}2 ≤

2ε2n log2(1/εn).

Next we estimate I2 in (22). For all y ∈ Acn and for any fixed x ∈ [0, 1] we choose γ′ > 1 such

that |y − f0(x)| ≥ |y| − ‖f0‖∞ > γ′/εn −B′0 ≥ 1/εn. From Fubini’s theorem,∫
|y|>1/εn

gf0,p0

(
log

gf0,p0
gf,p

)2

≤ 1

2πδn

∫ 1

0

∫
|y−f0(x)|>1/εn

e−
1
2
{y−f0(x)}2e

− 1

2δ2n
(w−x)2

(
log

∫
e−

1
2
(y−f0)2e

− 1

2δ2n
(w−x)2

p0(x) dx∫
e−

1
2
{y−f(x)}2e

− 1

2δ2n
(w−x)2

p(x) dx

)2

dy dw p0(x) dx

≤ (2π)−1/2
∫ 1

0

∫
|y−f0(x)|>1/εn

e−
1
2
{y−f0(x)}2

(
log

∣∣∣∣∣∣∣∣e−(y−f0)2/2e−(y−f)2/2

∣∣∣∣∣∣∣∣
∞

+ log

∣∣∣∣∣∣∣∣p0p
∣∣∣∣∣∣∣∣
∞

)2

dy p0(x) dx.
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Letting z = y − f0(x), we can show that for any x ∈ [0, 1], e−{y−f0(x)}
2/2+{y−f(x)}2/2 ≤ eεn|z|+ε

2
n/2.

Observe that,∫
Acn

gf0,p0

(
log

gf0,p0
gf,p

)2

≤ 4(2π)−1/2
∫ 1

0

(∫
|z|≥1/εn

e−
1
2
z2(εnz)

2 dz +

∫
|z|≥1/εn

e−
1
2
z2 log2(1/εn)dz

)
p0(x) dx

≤ 4(2π)−1/2P0

{
ε2n

∫
t>1/ε2n

e−t/2t1/2 dt+ log2(1/εn)pr(|Z| ≥ 1/εn)

}
≤ 4(2π)−1/2P0

{
ε2n

∫
t>1/ε2n

e−t/4 dt+ log2(1/εn)e−ε
−2
n /8

}
- e−ε

−2
n /8+log log(1/εn) < ε2n.

Combining results of I1 and I2, we can show
∫
gf0,p0(log gf0,p0/gf,p)

2 - ε2n. And further we have{∫
gf0,p0 log

gf0,p0
gf,p

- ε2n,

∫
gf0,p0

(
log

gf0,p0
gf,p

)2

- ε2n

}
⊃ {‖f − f0‖∞ ≤ εn, KL(p0, p) ≤ ε2n},

which yields the conclusion.

E Proof of Theorem 3.1

We first compute the expectation and covariance of f̃N . For any x ∈ R the expectation is

E{f̃N (x)} = (2/N)−1/2
N∑
j=1

∫ ∫
1

2π
cos(wjx+ sj)φc(wj) dwj dsj

= (2/N)−1/2
N∑
j=1

∫
1

2π

{
cos(wjx)

∫ −π
−π

cos sjdsj − sin(wjx)

∫ −π
−π

sin sjdsj

}
φc(wj) dwj = 0.

For any x, y ∈ R, the covariance is

cov{f̃N (x), f̃N (y)} = (2/N)
N∑
j=1

cov{cos(wjx+ sj), cos(wjx+ sj)} = 2Ew,s cos(xw + s)2

=
1

2π

∫
w

∫ π

−π
[cos{(x+ y)w + 2s}+ cos{(x− y)w}]φc(w)dsdw

=
1

2π

∫
w

∫ π

−π
[cos{(x+ y)w} sin(2s) + sin{(x+ y)w} cos(2s)] ds cos{(x− y)w}φc(w) dw

=
1

2π

∫
w

cos{(x− y)w}φc(w) dw = c(x, y).

Now we show f̃N weakly converges to the Gaussian process f . Based on Theorem 1.5.7 in van der

Vaart and Wellner (1996), it suffices to show the marginal weak convergence and asymptotical

tightness of f̃N .

First, we show the marginal weak convergence. For any finite sequence (x1, . . . , xk)
′ of [0, 1]
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with integer k > 0, applying multivariate central limit theorem with the above moment results, we

obtain as N →∞,

{f̃N (x1), . . . , f̃N (xk)} → N(0, ck,k),

in distribution, where ck,k is a k × k covariance matrix with ci,j = c(xi, xj).

Next we show the asymptotic tightness of f̃N . It has three conditions. First, [0, 1] is totally

bounded. Second, for any fixed x0 ∈ [0, 1], we need to show the tightness of f̃N (x0). It suffices to

show, by definition, for any ε > 0, there exists a compact set K such that,

pr{f̃(x0) ∈ K} > 1− ε. (23)

For any x0 ∈ [0, 1], we upper bound f̃(x0) as

|f̃N (x0)| ≤ (2/N)1/2
N∑
i=1

|aj |,

for aj ∼ N(0, 1), j = 1, . . . , N . With the well-known result that |aj | is a sub-gaussian random

variable. For any t > 0, we have

pr{|f̃N (x0)| ≥ t} ≤ pr

{
(2/N)1/2

N∑
i=1

|aj | ≥ t
}
≤ 2 exp(−ct2)

for some constant c > 0. For any ε > 0, we choose t = {2 log(1/ε)}1/2 and K = {|f̃(x0)| ≤ t}, then

(23) holds, thus we show the tightness of f̃N (x0) for any x0 ∈ [0, 1].

Third, we show f̃N is asymptotically uniformly d–eqicontinuous, where d is the Euclidean norm

and d(x, y) = |x− y| for x, y ∈ R. The definition is, for any ε, η > 0, there exists γ > 0 such that,

pr

{
sup

d(x,y)<γ
|f̃N (x)− f̃N (y)| > ε

}
< η. (24)

Recall aj ∼ N(0, 1) and wj ∼ N(0, 2/λ), aj and wj are independent. In the following we first

show ajwj is sub-exponential random variable with parameters (16/λ, (4/λ)1/2). By the definition

of the sub-exponential random variables and the properties of sub-Gaussian random variable, we

show that (aj wj) is a sub-exponential random variable. For any t > 0,

E{ exp(tajwj) } = E[E{ exp(tajwj) } | wj ] = 1 +

∞∑
k=1

(t/2)2E(w2k
j )

k!

= 1 + 2

∞∑
k=1

(2t2/λ)k = 1 + 2
2t2/λ

1− 2t2/λ

≤ 1 + 8t2/λ ≤ exp

{
t2

2
(16t2/λ)

}
.

The last two inequalities hold based on the inequality x/(1−x) ≤ 2x for x ≤ 1/2 and 1+x ≤ exp(x)
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separately. Since both aj and wj are symmetric about 0, we have

pr(|ajwj | ≥ t) = 2pr(ajwj ≥ t),

Thus |ajwj | is also a sub-exponential random variable. Note that,

sup
|x−y|<γ

|f̃N (x)− f̃N (y)| ≤ (2/N)1/2
N∑
j=1

γ |ajwj |.

Also, E( |ajwj | ) = (2/λ)1/2. Applying Bernstein inequality, we have for any t > 0,

pr

{
sup
|x−y|<γ

|f̃N (x)− f̃N (y)| ≥ (2N)1/2 γt

}
≤ pr

[
(2/N)1/2

N∑
i=1

γ {|ajwj | − E( |ajwj | )} ≥ (2N)1/2 γ t

]
≤ exp

(
− Nt2

2/λ+ (4/λ)1/2 t/3

)
.

For any ε, η > 0. Choose t such that

exp

(
− Nt2

2/λ+ (4/λ)1/2 t/3

)
= η,

and choose γ such that (2N)1/2 γ t = ε. With such γ, t, f̃N satisfies (24). Hence the proof of weak

convergence of f̃N to the original Gaussian procss is completed.

F Posterior computation: A Gibbs sampler

In the following, we develop a Gibbs sampler to generate a Markov chain which will eventually

converge to the posterior distribution [θ | Dn]. We start with the Gaussian process associated

with an exponential squared kernel as an illustration (in practice the algorithm can be applied

to other kernels as long as they are symmetric). The exponential squared kernel is C(x, x′) =

exp{−(x − x′)2/λ} with bandwidth parameter λ. Theorem 3.1 enforces the prior distributions

wj ∼ N(0, 2/λ), sj ∼ Unif (0, 2π) and aj ∼ N(0, 1) identically and independently for j = 1, . . . , N .

To ensure conditional conjugacy, we place a gamma distribution Ga(a0, b0) on bandwidth λ with

shape parameter a0 and scale parameter b0. We place a Dirichlet process mixture of normals prior

defined in (8), given more precisely by

Xi ∼
∞∑
h=1

πhN(µh, τ
−1
h ), (µh, τh) ∼ N(µh;µ0, κ0τ

−1
h )Ga(τh; aτ , bτ ), (25)

on the density of X. The prior on πh is expressed as πh = νh
∏
l<h(1 − νl) where νl ∼ Beta(1, α).

Here α = 1. Denote the cluster label Si ∈ {1, . . . ,K} for Xi indicating that each Xi is associated

with Sith component in the Dirichlet process Gaussian mixture prior. Then (26) can be also written
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as

Xi | Si, µ, τ ∼ N(µSi , τ
−1
Si

), (µSi , τSi) ∼ N(µSi ;µ0, κ0τ
−1
Si

)Ga(τSi ; aτ , bτ ). (26)

In the simulation studies and the real data example, we fix µ0 = 0, κ0 = 1, aτ = 1, bτ = 1. We

put a gamma prior on λ with hyperparameters a0 = 5, b0 = 1, chosen based on our numerical

experiments. In addition, we assume σ = 0.2 in the simulation studies. To describe the full

conditional distributions, we use symbols a,w, s,X to denote the corresponding vectors. Then the

joint full posterior distribution for {a,w, s, λ,X} can be factored as

[a,w, s, λ,X | Y,W ] ∝ [Y | X, a,w, s, λ]× [W | X]× [w | λ]× [λ]× [a]× [s]× [X].

The full conditional distributions are as follows:

1. Update [w | −] in a block by sampling [wj | −] ∝ [Y | X, a,w, s, λ] N(wj ; 0, 2/λ) independently

using Metropolis-Hastings algorithm.

2. Update [s | −] in a block by sampling [sj | −] ∝ [Y | X, a,w, s, λ] Unif [0, 2π] independently

using Metropolis-Hastings algorithm.

3. Update [a | −] from a multivariate normal distribution N(µ̃, Σ̃), with mean vector µ̃ =

Σ̃ ΦT Y/σ2, and Σ̃ = (ΦTΦ/σ2 + IN )−1, where Φ is a n × N matrix with (i, j)th element

Φi,j = (2/N)1/2 cos(wjxi + sj), and IN is N ×N identity matrix.

4. Update the parameters [S, µ, τ, π | −] of the density in Dirichlet process Gaussian mixture

prior as in Ishwaran and James (2001) with the number of mixture components truncated at

20.

5. Update [X | −] in a block by sampling

[Xi|Si, X−i,−] ∝ N(Yi; Φi,1:Na, σ
2)N(Wi;Xi, δ

)N(Xi;µSi , τSi)

using Metropolis-Hastings algorithm.

6. Update [λ | −] ∝ Ga(â, b̂) with â = a0 and b̂ = b0/(1 + b0
∑n

j=1w
2
j/4).

7. Update [σ2 | −] ∝ IG(aσ2 , bσ2), where aσ2 = n/2 and bσ2 = (Y −Φ1N )T(Y −Φ1N )/2, where

1N denotes the n× 1 vector with all elements to be 1.

We use random walk proposal wprop
j ∼ N(wcur

j , 1/4). The proposal variance is tuned to obtain

average pointwise acceptance rate around 0.7; to sample from the full conditional of si we consider

the independence proposal spropi ∼ Unif (0, 2π). We noted that the averaged point-wise acceptance

rate for si is around 0.6. Finally, to sample from the full conditional distribution of xi, we use an

adaptive proposal xpropi ∼ N(Wi/δ
2 + µSiτSi , 1/(1/δ

2 + τSi)) with average acceptance rate around

0.8.
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G Additional numerical results

Table 2: Averaged Mean Squared Errors (amse) EK−1
∑K

k=1{ f̂j(tk)− fj(tk) }2 (f̂j(·) denotes the
proposed estimator of fj , j = 1, 2) over a regular grid (t1, . . . , tK) of size K = 100 in the interval
[−3, 3] and standard errors (×102) over 50 replicated data sets of size n = 100

δ2

Function Method 0·01 0·2 0·4 0·6 0·8 1

f1

gpeva 0·55 (0·24) 4·56 (2·74) 7·59 (4·13) 9·53 (6·64) 11·89 (8·06) 13·48 (11·16)
gpevf 0·57 (0·26) 4·42 (2·4) 8·37 (3·97) 11·81 (4·81) 13·44 (7·58) 15·89 (8·04)
gpevn 0·55 (0·24) 5·58 (2·28) 12·62 (5·47) 18·08 (7·43) 20·73 (8·85) 22·46(7·71)
gp 3·31(0·36) 5·84 (1·15) 8·73 (1·83) 11·42 (1·83) 13·97 (2·94) 15·7 (3·24)
decon 1·1(0·61) 4·56 (1·51) 9·13 (2·72) 13·65 (3·49) 17·51 (3·28) 19·95 (3·2)

δ2

Function Method 0·01 0·2 0·4 0·6 0·8 1

f2

gpeva 0·55 (0·31) 3·88 (2·18) 6·43 (4·53) 8·23 (5·05) 9·84 (4·78) 12·99 (9·27)
gpevf 0·58 (0·34) 4·4 (2·41) 6·64 (3·49) 9·38 (0·05) 15·19 (14·65) 17·19 (9·73)
gpevn 0·54 (0·3 ) 5·83 (2·62) 13·45 (4·05) 20·04 (5·28) 24·05 (6·51) 29·84 (9·32)
gp 0·57 (0·29) 3·15 (1·09) 5·82 (1·95) 8·4 (3·00) 10·93 (3·87) 13·67 (4·68)
decon 4·01 (4·74) 5·73 (3·18) 8·9 (2·86) 13·68 (4·69) 18·19 (4·83) 22·28 (5·06)
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Table 3: Averaged Mean Squared Errors (amse) EK−1
∑K

k=1{ f̂j(tk)− fj(tk) }2 (f̂j(·) denotes the
proposed estimator of fj , j = 1, 2) over a regular grid (t1, . . . , tK) of size K = 100 in the interval
[−3, 3] and standard errors (×102) over 50 replicated data sets of size n = 250

δ2

Function Method 0·01 0·2 0·4 0·6 0·8 1

f1

gpeva 0·25 (0·09) 4·08 (1·51) 5·75 (3·15) 6·16 (3·73) 6·03 (4·46) 8·90 (6·84)
gpevf 0·26 (0·10) 4·45 (1·31) 7·37 (2·91) 9·37 (3·11) 11·33 (4·23) 13·94 (7·79)
gpevn 0·23 (0·09) 4·31 (1·37) 9·41 (3·06) 13·82 (3·79) 17·04 (4·48) 21·93 (6·86)
gp 2·31 (0·16) 4·67 (0·52) 7·68 (0·98) 10·48 (1·27) 13·08 (1·76) 15·01 (2·13)
decon 0·58 (0·36) 3·17 (0·81) 7·80 (1·43) 12·87 (1·76) 16·80 (1·92) 18·89 (1·89)

δ2

Function Method 0·01 0·2 0·4 0·6 0·8 1

f2

gpeva 0·25 (0·08) 4·18 (1·56) 6·70 (1·94) 7·87 (3·70) 10·46 (5·11) 11·15 (6·32)
gpevf 0·26 (0·09) 4·88 (1·66) 7·39 (2·65) 9·50 (4·18) 13·55 (7·98) 18·67 (11·95)
gpevn 0·24 (0·08) 5·53 (1·6) 12·25 (3·44) 21·29 (5·05) 25·58 (4·96) 28·54 (6·49)
gp 0·23 (0·09) 2·44 (0·57) 4·73 (1·08) 7·62 (1·66) 10·55(2·04) 13·36 (2·34)
decon 1·87 (2·19) 3·24 (0·89) 6·70 (1·71) 11·63 (2·21) 16·33 (2·56) 21·25 (2·67)

Figure 5: Estimation of f1(x) and f2(x) with δ2 = 0.01 (left panel), δ2 = 0.6 (middle panel) and
δ2 = 1 (right panel). The first row shows estimation of f1(x) and the second row is for f2(x).
Sample size n = 100. The red line is the true function, the black line is the estimated function
using gpeva, the blue line is for decon, the purple dashed line is for gp. The darker and the lighter
shades are the pointwise and simultaneous 95% credible intervals of gpeva.
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Figure 6: Estimation of f1(x) and f2(x) with δ2 = 0.01 (left panel), δ2 = 0.6 (middle panel) and
δ2 = 1 (right panel). The first row shows predictions for f1(x) and the second row for f2(x). Sample
size n = 250. The red line is the true function, the black line is gpeva, the blue line is decon, the
purple dashed line is gp. The darker and the lighter shades are the pointwise and simultaneous
95% credible intervals of gpeva.

Figure 7: Boxplots for f1(x) and f2(x) over five methods mentioned in Section 4 on 50 replicated
data sets. First row shows the results for f1(x) and the second row for f2(x). δ2 = 0.01 (left panel),
δ2 = 0.6 (middle panel) and δ2 = 1 (right panel). Sample size n = 100. In each panel the displayed
methods from left to right are gpeva, gpevf , gpevn, gp and decon.

35



Figure 8: Boxplots for f1(x) and f2(x) over five methods mentioned in Section 4 on 50 replicated
data sets. First row shows the results for f1(x) and the second row for f2(x). δ2 = 0.01 (left panel),
δ2 = 0.6 (middle panel) and δ2 = 1 (right panel). Sample size n = 250. In each panel the displayed
methods from left to right are gpeva, gpevf , gpevn, gp and decon.

Figure 9: Trace plots of last 200 posterior samples of λ of gpeva (first row) and gpevf (second
row) modeling f1 when sample size n = 100. In each row, the values of δ2 are 0.01 (left panel), 0.6
(middle panel) and 1 (right panel).
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Figure 10: Density of posterior samples of covariates of gpeva estimating f1(x) (first row) and
f2(x) (second row) when n = 500. The value of δ2 are 0.005 (left panel), 0.1 (middle panel), 0.5
(right panel).

Figure 11: Trace plots and density plots of the 500 posterior samples of a subset of {wj , sj , xj}
from treatment group with δ2 = 0.35 (left panel) and with unknown δ2 (right panel) in the data
example.
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